OFFSET
1,1
COMMENTS
Related to a Ramanujan congruence for the partition function P = A000041.
Extending work of Ramanujan, Watson (1938) proved that P(m) == 0 (mod 5^n) if 24*m == 1 (mod 5^n). In particular, P(a(n)) == 0 (mod 5^n). - Petros Hadjicostas, Jul 29 2020
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
G. N. Watson, Ramanujans Vermutung über Zerfällungsanzahlen, J. Reine Angew. Math. (Crelle), 179 (1938), 97-128.
Eric Weisstein's World of Mathematics, Partition Function P Congruences.
Index entries for linear recurrences with constant coefficients, signature (1,25,-25).
FORMULA
G.f.: x*(-25*x^2 + 20*x + 4)/((1 - x)*(1 - 5*x)*(1 + 5*x)).
a(n) = (1 + (21 + 2*(-1)^n)*5^n)/24. - Bruno Berselli, Apr 04 2011
a(n) = a(n-1) + 25*a(n-2) - 25*a(n-3). - Vincenzo Librandi, Jul 01 2012
A000041(a(n)) == 0 (mod 5^n). - Petros Hadjicostas, Jul 29 2020
EXAMPLE
MATHEMATICA
Table[PowerMod[24, -1, 5^a], {a, 21}]
CoefficientList[Series[(-25x^2+20x+4)/((1-x)(1-5x)(1+5x)), {x, 0, 30}], x] (* Vincenzo Librandi, Jul 01 2012 *)
PROG
(Magma) I:=[4, 24, 99]; [n le 3 select I[n] else Self(n-1)+25*Self(n-2)-25*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jul 01 2012
(PARI) a(n) = lift(Mod(24, 5^n)^-1) \\ David A. Corneth and Petros Hadjicostas, Jul 29 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Name edited by Petros Hadjicostas, Jul 29 2020
STATUS
approved