login
This site is supported by donations to The OEIS Foundation.

 

Logo

The submissions stack has been unacceptably high for several months now. Please voluntarily restrict your submissions and please help with the editing. (We don't want to have to impose further limits.)

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052460 3-magic series constant. 3
1, 50, 675, 4624, 21125, 73926, 214375, 540800, 1225449, 2550250, 4952651, 9082800, 15873325, 26622974, 43095375, 67634176, 103295825, 154001250, 224707699, 321602000, 452316501, 626168950, 854427575, 1150602624 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Eric Weisstein's World of Mathematics, Magic Constant.

Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).

FORMULA

a(n) = n^3/4 * (n^2 + 1)^2.

G.f.: x*(1+42*x+303*x^2+568*x^3+303*x^4+42*x^5+x^6)/(1-x)^8 .

a(1)=1, a(2)=50, a(3)=675, a(4)=4624, a(5)=21125, a(6)=73926, a(7)=214375, a(8)=540800, a(n)=8*a(n-1)-28*a(n-2)+56*a(n-3)-70*a(n-4)+ 56*a(n-5)- 28*a(n-6)+8*a(n-7)-a(n-8). - Harvey P. Dale, Aug 14 2013

MATHEMATICA

Table[n^3/4 (n^2+1)^2, {n, 30}] (* or *) LinearRecurrence[ {8, -28, 56, -70, 56, -28, 8, -1}, {1, 50, 675, 4624, 21125, 73926, 214375, 540800}, 30] (* Harvey P. Dale, Aug 14 2013 *)

CoefficientList[Series[(1 + 42 x + 303 x^2 + 568 x^3 + 303 x^4 + 42 x^5 + x^6) / (x - 1)^8, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 14 2013 *)

CROSSREFS

Cf. A052459, A052461.

Sequence in context: A231583 A156965 A240385 * A224168 A223859 A223982

Adjacent sequences:  A052457 A052458 A052459 * A052461 A052462 A052463

KEYWORD

nonn,easy

AUTHOR

Eric W. Weisstein

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified August 29 08:06 EDT 2015. Contains 261188 sequences.