login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052460
3-magic series constant.
3
1, 50, 675, 4624, 21125, 73926, 214375, 540800, 1225449, 2550250, 4952651, 9082800, 15873325, 26622974, 43095375, 67634176, 103295825, 154001250, 224707699, 321602000, 452316501, 626168950, 854427575, 1150602624
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, Magic Constant.
FORMULA
a(n) = n^3/4 * (n^2 + 1)^2.
G.f.: x*(1 +42*x +303*x^2 +568*x^3 +303*x^4 +42*x^5 +x^6)/(1-x)^8 .
a(1)=1, a(2)=50, a(3)=675, a(4)=4624, a(5)=21125, a(6)=73926, a(7)= 214375, a(8)=540800, a(n) = 8*a(n-1) -28*a(n-2) +56*a(n-3) -70*a(n-4) + 56*a(n-5) -28*a(n-6) +8*a(n-7) -a(n-8). - Harvey P. Dale, Aug 14 2013
E.g.f.: x*(4 +96*x +352*x^2 +370*x^3 +142*x^4 +21*x^5 + x^6)*exp(x)/4. - G. C. Greubel, Sep 23 2019
MAPLE
seq(n^3*(1+n^2)^2/4, n=1..30); # G. C. Greubel, Sep 23 2019
MATHEMATICA
Table[n^3/4 (n^2+1)^2, {n, 30}] (* or *) LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {1, 50, 675, 4624, 21125, 73926, 214375, 540800}, 30] (* Harvey P. Dale, Aug 14 2013 *)
CoefficientList[Series[(1+42x+303x^2+568x^3+303x^4+42x^5+x^6)/(1-x)^8, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 14 2013 *)
PROG
(PARI) vector(30, n, n^3*(1+n^2)^2/4) \\ G. C. Greubel, Sep 23 2019
(Magma) [n^3*(1+n^2)^2/4: n in [1..30]]; // G. C. Greubel, Sep 23 2019
(Sage) [n^3*(1+n^2)^2/4 for n in (1..30)] # G. C. Greubel, Sep 23 2019
(GAP) List([1..30], n-> n^3*(1+n^2)^2/4); # G. C. Greubel, Sep 23 2019
CROSSREFS
Sequence in context: A240385 A282766 A323485 * A224168 A223859 A223982
KEYWORD
nonn,easy
STATUS
approved