login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052460 3-magic series constant. 3
1, 50, 675, 4624, 21125, 73926, 214375, 540800, 1225449, 2550250, 4952651, 9082800, 15873325, 26622974, 43095375, 67634176, 103295825, 154001250, 224707699, 321602000, 452316501, 626168950, 854427575, 1150602624 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Eric Weisstein's World of Mathematics, Magic Constant.

Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).

FORMULA

a(n) = n^3/4 * (n^2 + 1)^2.

G.f.: x*(1+42*x+303*x^2+568*x^3+303*x^4+42*x^5+x^6)/(1-x)^8 .

a(1)=1, a(2)=50, a(3)=675, a(4)=4624, a(5)=21125, a(6)=73926, a(7)=214375, a(8)=540800, a(n)=8*a(n-1)-28*a(n-2)+56*a(n-3)-70*a(n-4)+ 56*a(n-5)- 28*a(n-6)+8*a(n-7)-a(n-8). - Harvey P. Dale, Aug 14 2013

MATHEMATICA

Table[n^3/4 (n^2+1)^2, {n, 30}] (* or *) LinearRecurrence[ {8, -28, 56, -70, 56, -28, 8, -1}, {1, 50, 675, 4624, 21125, 73926, 214375, 540800}, 30] (* Harvey P. Dale, Aug 14 2013 *)

CoefficientList[Series[(1 + 42 x + 303 x^2 + 568 x^3 + 303 x^4 + 42 x^5 + x^6) / (x - 1)^8, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 14 2013 *)

CROSSREFS

Cf. A052459, A052461.

Sequence in context: A231583 A156965 A240385 * A224168 A223859 A223982

Adjacent sequences:  A052457 A052458 A052459 * A052461 A052462 A052463

KEYWORD

nonn,easy

AUTHOR

Eric W. Weisstein

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 7 11:24 EST 2016. Contains 278874 sequences.