login
A052461
4-magic series constant.
3
1, 177, 5111, 60962, 430729, 2158099, 8488095, 27903044, 79895265, 205033333, 481386807, 1049954918, 2152397897, 4185095383, 7774354687, 13878462600, 23923217921, 39978597945, 64985300791, 103041066666, 159757914953
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, Magic Constant.
Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
FORMULA
G.f.: x*(x^8 +167*x^7 +3386*x^6 +17697*x^5 +30074*x^4 +17697*x^3 +3386*x^2 +167*x +1)/(x-1)^10. - Colin Barker, Jun 06 2013
From G. C. Greubel, Sep 23 2019: (Start)
a(n) = n*(6*n^8 +15*n^6 +10*n^4 -1)/30.
E.g.f.: x*(30 +2625*x +22915*x^2 +51970*x^3 +43816*x^4 +16191*x^5 +2787* x^6 +216*x^7 +6*x^8)*exp(x)/30. (End)
MAPLE
seq(n*(6*n^8 +15*n^6 +10*n^4 -1)/30, n=1..25); # G. C. Greubel, Sep 23 2019
MATHEMATICA
Table[n*(6*n^8 +15*n^6 +10*n^4 -1)/30, {n, 25}] (* G. C. Greubel, Sep 23 2019 *)
PROG
(PARI) a(n)=(6*n^9+15*n^7+10*n^5-n)/30 \\ Charles R Greathouse IV, Jun 06 2013
(Magma) [n*(6*n^8 +15*n^6 +10*n^4 -1)/30: n in [1..25]]; // G. C. Greubel, Sep 23 2019
(Sage) [n*(6*n^8 +15*n^6 +10*n^4 -1)/30 for n in (1..25)] # G. C. Greubel, Sep 23 2019
(GAP) List([1..25], n-> n*(6*n^8 +15*n^6 +10*n^4 -1)/30); # G. C. Greubel, Sep 23 2019
CROSSREFS
Sequence in context: A292185 A083620 A097317 * A173375 A069398 A189910
KEYWORD
nonn,easy
STATUS
approved