login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052399
Number of permutations in S_n with longest increasing subsequence of length <= 6.
9
1, 1, 2, 6, 24, 120, 720, 5039, 40270, 361302, 3587916, 38957991, 457647966, 5763075506, 77182248916, 1091842643475, 16219884281650, 251774983140578, 4066273930979460, 68077194367392864, 1177729684507324152, 20995515989327134152, 384762410996641402384
OFFSET
0,3
COMMENTS
Previous name was: Related to Young tableaux of bounded height.
LINKS
F. Bergeron and F. Gascon, Counting Young tableaux of bounded height, J. Integer Sequences, Vol. 3 (2000), #00.1.7.
Alin Bostan, Andrew Elvey Price, Anthony John Guttmann, Jean-Marie Maillard, Stieltjes moment sequences for pattern-avoiding permutations, arXiv:2001.00393 [math.CO], 2020.
Shalosh B. Ekhad, Nathaniel Shar, and Doron Zeilberger, The number of 1...d-avoiding permutations of length d+r for SYMBOLIC d but numeric r, arXiv:1504.02513 [math.CO], 2015.
Nathaniel Shar, Experimental methods in permutation patterns and bijective proof, PhD Dissertation, Mathematics Department, Rutgers University, May 2016.
FORMULA
a(n) ~ 5 * 2^(2*n + 6) * 3^(2*n + 21) / (n^(35/2) * Pi^(5/2)). - Vaclav Kotesovec, Sep 10 2014
MAPLE
h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j
+add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= proc(n, i, l) option remember;
`if`(n=0, h(l)^2, `if`(i<1, 0, `if`(i=1, h([l[], 1$n])^2,
g(n, i-1, l)+ `if`(i>n, 0, g(n-i, i, [l[], i])))))
end:
a:= n-> g(n, 6, []):
seq(a(n), n=0..25); # Alois P. Heinz, Apr 10 2012
# second Maple program
a:= proc(n) option remember; `if`(n<7, n!,
((56*n^5-9408+11032*n+19028*n^2+7360*n^3+1092*n^4)*a(n-1)
-4*(196*n^3+1608*n^2+3167*n+444)*(n-1)^2*a(n-2)
+1152*(2*n+3)*(n-1)^2*(n-2)^2*a(n-3))/ ((n+9)*(n+8)^2*(n+5)^2))
end:
seq(a(n), n=1..30); # Alois P. Heinz, Sep 26 2012
MATHEMATICA
h[l_] := With[{n = Length[l]}, Sum[i, {i, l}]!/Product[Product[1+l[[i]]-j+Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]]; g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1&, n]]]^2, If[i<1, 0, Sum[g[n-i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]]; a[n_, k_] := If[k >= n, n!, g[n, k, {}]]; Table[a[n, 6], {n, 0, 30}] (* Jean-François Alcover, Mar 11 2014, after Alois P. Heinz *)
CROSSREFS
Column k=6 of A214015.
Sequence in context: A164873 A226438 A248839 * A177553 A090583 A248775
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 13 2000
EXTENSIONS
More terms from Alois P. Heinz, Apr 10 2012
New name from Vaclav Kotesovec, Sep 10 2014
STATUS
approved