login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A248775 Greatest 7th-power-free divisor of n!. 4
1, 2, 6, 24, 120, 720, 5040, 315, 2835, 28350, 311850, 3742200, 48648600, 681080400, 10216206000, 1277025750, 21709437750, 178678500, 3394891500, 67897830000, 1425854430000, 31368797460000, 721482341580000, 135277939046250, 3381948476156250 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Clark Kimberling, Table of n, a(n) for n = 1..1000

FORMULA

a(n) = n!/A248773(n).

EXAMPLE

a(8) = 315 because 315 divides 8! and if k > 315 divides 8!, then h^7 divides 8!/k for some h > 1.

MATHEMATICA

z = 50; f[n_] := f[n] = FactorInteger[n!]; r[m_, x_] := r[m, x] = m*Floor[x/m];

u[n_] := Table[f[n][[i, 1]], {i, 1, Length[f[n]]}];

v[n_] := Table[f[n][[i, 2]], {i, 1, Length[f[n]]}];

p[m_, n_] := p[m, n] = Product[u[n][[i]]^r[m, v[n]][[i]], {i, 1, Length[f[n]]}];

m = 7; Table[p[m, n], {n, 1, z}] (* A248773 *)

Table[p[m, n]^(1/m), {n, 1, z}] (* A248774 *)

Table[n!/p[m, n], {n, 1, z}] (* A248775 *)

CROSSREFS

Cf. A248773, A248774, A000142.

Sequence in context: A052399 A177553 A090583 * A108889 A248772 A033645

Adjacent sequences: A248772 A248773 A248774 * A248776 A248777 A248778

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Oct 14 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 17:12 EST 2022. Contains 358702 sequences. (Running on oeis4.)