login
A052387
Number of 3 X n binary matrices such that any 2 rows have a common 1, up to column permutations.
1
0, 1, 8, 37, 127, 358, 876, 1926, 3894, 7359, 13156, 22451, 36829, 58396, 89896, 134844, 197676, 283917, 400368, 555313, 758747, 1022626, 1361140, 1791010, 2331810, 3006315, 3840876, 4865823, 6115897, 7630712, 9455248
OFFSET
0,3
LINKS
V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).
FORMULA
a(n) = n*(n+1)*(n+2)*(n+3)*(n^3 +22*n^2 +53*n +134)/5040.
G.f.: -x*(x^3-x^2-1)/(x-1)^8. - Colin Barker, Nov 05 2012
MAPLE
A052387:=n->n*(n+1)*(n+2)*(n+3)*(n^3+22*n^2+53*n+134)/5040; seq(A052387(n), n=0..30); # Wesley Ivan Hurt, May 15 2014
MATHEMATICA
Table[n*(n + 1)*(n + 2)*(n + 3)*(n^3 + 22*n^2 + 53*n + 134)/5040, {n,
0, 30}] (* Wesley Ivan Hurt, May 15 2014 *)
PROG
(Magma) [n*(n+1)*(n+2)*(n+3)*(n^3+22*n^2+53*n+134)/5040: n in [0..30]]; // Wesley Ivan Hurt, May 15 2014
(PARI) x='x+O('x^50); concat([0], Vec(-x*(x^3-x^2-1)/(x-1)^8)) \\ G. C. Greubel, Oct 07 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vladeta Jovovic, Goran Kilibarda, Mar 11 2000
STATUS
approved