login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A051588 Number of 3 X n binary matrices such that any 2 rows have a common 1. 7
0, 1, 15, 175, 1827, 17791, 164955, 1475335, 12844707, 109581871, 920591595, 7643833495, 62904774387, 514168732351, 4180996130235, 33864296127655, 273465115692867, 2203291473841231, 17721094011796875, 142344054436901815 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, (in Russian), Diskretnaya Matematika, 11 (1999), no. 4, 127-138.

V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, (English translation), Discrete Mathematics and Applications, 9, (1999), no. 6.

Index entries for linear recurrences with constant coefficients, signature (23,-194,712,-960).

FORMULA

a(n) = 8^n - 3*6^n + 3*5^n - 4^n.

a(0)=0, a(1)=1, a(2)=15, a(3)=175, a(n)=23*a(n-1)-194*a(n-2)+ 712*a(n-3)- 960*a(n-4). - Harvey P. Dale, Mar 07 2012

G.f.: x*(24*x^2-8*x+1)/((4*x-1)*(5*x-1)*(6*x-1)*(8*x-1)). - Colin Barker, Nov 05 2012

MAPLE

A051588:=n->8^n-3*6^n+3*5^n-4^n: seq(A051588(n), n=0..30); # Wesley Ivan Hurt, May 03 2017

MATHEMATICA

Table[8^n-3*6^n+3*5^n-4^n, {n, 0, 20}] (* or *) LinearRecurrence[ {23, -194, 712, -960}, {0, 1, 15, 175}, 20] (* Harvey P. Dale, Mar 07 2012 *)

PROG

(PARI) for(n=0, 50, print1(8^n - 3*6^n + 3*5^n - 4^n, ", ")) \\ G. C. Greubel, Oct 06 2017

CROSSREFS

Cf. A005061.

Sequence in context: A082678 A107395 A036083 * A016164 A000482 A145147

Adjacent sequences:  A051585 A051586 A051587 * A051589 A051590 A051591

KEYWORD

nonn,easy

AUTHOR

Vladeta Jovovic, Goran Kilibarda

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 19 04:40 EDT 2019. Contains 328211 sequences. (Running on oeis4.)