login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052178
Number of walks of length n on the simple cubic lattice terminating at height 2 above the (x,y)-plane.
1
1, 12, 99, 700, 4569, 28476, 172508, 1026288, 6033690, 35195512, 204232809, 1181052756, 6814746393, 39267916380, 226097749224, 1301403695520, 7490649175326, 43123589230824, 248351880642630, 1430956006648056, 8249467230853002, 47587180659332248
OFFSET
2,2
LINKS
Rigoberto Flórez, Leandro Junes, and José L. Ramírez, Further Results on Paths in an n-Dimensional Cubic Lattice, Journal of Integer Sequences, Vol. 21 (2018), Article 18.1.2.
R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6.
MAPLE
b:= proc(n, k) option remember; `if`(min(n, k)<0, 0,
`if`(max(n, k)=0, 1, b(n-1, k-1)+4*b(n-1, k)+b(n-1, k+1)))
end:
a:= n-> b(n, 2):
seq(a(n), n=2..25); # Alois P. Heinz, Oct 28 2021
CROSSREFS
Column 2 of A052179.
Sequence in context: A090230 A133652 A004058 * A322721 A367607 A123902
KEYWORD
nonn,walk
AUTHOR
N. J. A. Sloane, Jan 26 2000
EXTENSIONS
More terms and title improved by Sean A. Irvine, Oct 28 2021
STATUS
approved