login
A052178
Number of walks of length n on the simple cubic lattice terminating at height 2 above the (x,y)-plane.
1
1, 12, 99, 700, 4569, 28476, 172508, 1026288, 6033690, 35195512, 204232809, 1181052756, 6814746393, 39267916380, 226097749224, 1301403695520, 7490649175326, 43123589230824, 248351880642630, 1430956006648056, 8249467230853002, 47587180659332248
OFFSET
2,2
LINKS
Rigoberto Flórez, Leandro Junes, and José L. Ramírez, Further Results on Paths in an n-Dimensional Cubic Lattice, Journal of Integer Sequences, Vol. 21 (2018), Article 18.1.2.
R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6.
MAPLE
b:= proc(n, k) option remember; `if`(min(n, k)<0, 0,
`if`(max(n, k)=0, 1, b(n-1, k-1)+4*b(n-1, k)+b(n-1, k+1)))
end:
a:= n-> b(n, 2):
seq(a(n), n=2..25); # Alois P. Heinz, Oct 28 2021
CROSSREFS
Column 2 of A052179.
Sequence in context: A090230 A133652 A004058 * A322721 A367607 A123902
KEYWORD
nonn,walk
AUTHOR
N. J. A. Sloane, Jan 26 2000
EXTENSIONS
More terms and title improved by Sean A. Irvine, Oct 28 2021
STATUS
approved