This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A052180 Last filtering prime for n-th prime p: find smallest prime factor of each of the composite numbers between p and next prime; take maximal value. 24
 2, 2, 3, 2, 3, 2, 3, 5, 2, 5, 3, 2, 3, 7, 5, 2, 5, 3, 2, 7, 3, 5, 7, 3, 2, 3, 2, 3, 11, 3, 7, 2, 11, 2, 5, 7, 3, 13, 5, 2, 11, 2, 3, 2, 11, 13, 3, 2, 3, 5, 2, 13, 11, 7, 5, 2, 5, 3, 2, 17, 13, 3, 2, 3, 17, 5, 11, 2, 3, 5, 19, 7, 13, 3, 5, 17, 3, 13, 7, 2, 7, 2, 19, 3, 5, 11, 3, 2, 3, 11, 13, 3, 17 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,1 COMMENTS A000879(n) is the least index i such that a(i) = prime(n). - Labos Elemer, May 14 2003 LINKS T. D. Noe, Table of n, a(n) for n=2..10000 FORMULA a(n) = Max_{j=1+prime(n)..prime(n+1)-1} A020639(j) where A020639(j) is the least prime dividing j. EXAMPLE For n=9, n-th prime is 23, composites between 23 and next prime are 24 25 26 27 28, smallest prime divisors are 2 5 2 3 2; maximal value is 5, so a(9)=5. MATHEMATICA ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] mi[x_] := Min[ba[x]] Table[Max[Table[mi[ba[w]], {w, Prime[j]+1, -1+Prime[j+1]}]], {j, 1, 256}] mpf[{a_, b_}]:=Max[FactorInteger[#][[1, 1]]&/@Range[a+1, b-1]]; mpf/@ Partition[ Prime[Range[2, 100]], 2, 1] (* Harvey P. Dale, Apr 30 2013 *) PROG (Haskell) a052180 n = a052180_list !! (n-2) a052180_list = f [4..] where    f ws = (maximum \$ map a020639 us) : f vs where      (us, _:vs) = span  ((== 0) . a010051) ws -- Reinhard Zumkeller, Dec 27 2012 (PARI) a(n) = {my(p = prime(n), amax = 0); forcomposite(c = p, nextprime(p+1), amax = max(factor(c)[1, 1], amax); ); amax; } \\ Michel Marcus, Apr 21 2018 CROSSREFS Cf. A052248, A020639, A000720, A083269, A000879. Cf. A010051. Sequence in context: A308050 A248147 A087458 * A065151 A320013 A299990 Adjacent sequences:  A052177 A052178 A052179 * A052181 A052182 A052183 KEYWORD nonn,easy,nice AUTHOR Labos Elemer, Feb 05 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 17 22:53 EDT 2019. Contains 327147 sequences. (Running on oeis4.)