login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052177 Number of walks on simple cubic lattice (starting on the xy plane, never going below it and finishing a height 1 above it). 2
0, 1, 8, 50, 288, 1605, 8824, 48286, 264128, 1447338, 7953040, 43842788, 242507456, 1345868589, 7493458392, 41850173670, 234408444288, 1316541032958, 7413214297968, 41842633282620, 236703844320960 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

Rigoberto Flórez, Leandro Junes, José L. Ramírez, Further Results on Paths in an n-Dimensional Cubic Lattice, Journal of Integer Sequences, Vol. 21 (2018), Article 18.1.2.

R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6.

FORMULA

a(n) = 4*a(n-1)+A005572(n-1)+A052178(n-1) = A052179(n, 1) = Sum_{j=0..ceiling((n-1)/2)} 4^(n-2j-1)*binomial(n, 2j+1)*binomial(2j+2, j+1)/(j+2).

Recurrence: (n-1)*(n+3)*a(n) = 4*n*(2*n+1)*a(n-1) - 12*(n-1)*n*a(n-2). - Vaclav Kotesovec, Oct 08 2012

a(n) ~ 6^(n+3/2)/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 08 2012

G.f.: (1 - 4*x - sqrt(1-8*x+12*x^2))^2/(4*x^3). - Mark van Hoeij, May 16 2013

MATHEMATICA

Flatten[{0, RecurrenceTable[{(n-1)*(n+3)*a[n] == 4*n*(2*n+1)*a[n-1] - 12*(n-1)*n*a[n-2], a[1]==1, a[2]==8}, a, {n, 20}]}] (* Vaclav Kotesovec, Oct 08 2012 *)

CROSSREFS

Sequence in context: A081675 A283277 A081180 * A127745 A243876 A037547

Adjacent sequences:  A052174 A052175 A052176 * A052178 A052179 A052180

KEYWORD

nonn,walk

AUTHOR

N. J. A. Sloane, Jan 26 2000

EXTENSIONS

More terms and formula from Henry Bottomley, Aug 23 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 16 03:34 EDT 2019. Contains 328040 sequences. (Running on oeis4.)