login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A051747 a(n) = n*(n+1)*(n+2)*(n^2+7*n+32)/120. 4
2, 10, 31, 76, 161, 308, 546, 912, 1452, 2222, 3289, 4732, 6643, 9128, 12308, 16320, 21318, 27474, 34979, 44044, 54901, 67804, 83030, 100880, 121680, 145782, 173565, 205436, 241831, 283216, 330088, 382976, 442442, 509082, 583527, 666444, 758537 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).

FORMULA

a(n) = binomial(n+4, n-1)+binomial(n+2, n-1).

Convolution of triangular numbers with triangular numbers + 1, i.e. [1, 3, 6, 10, 15, 21, ...] with [2, 4, 7, 11, 16, 22, ...].

a(1)=2, a(2)=10, a(3)=31, a(4)=76, a(5)=161, a(6)=308, a(n)=6*a(n-1)- 15*a(n-2)+ 20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6). - Harvey P. Dale, Oct 03 2012

G.f.: x*(x^2-2*x+2) / (x-1)^6. - Colin Barker, Mar 18 2015

MATHEMATICA

Table[(1/120)*n*(n + 1)*(n + 2)*(n^2 + 7*n + 32), {n, 60}] (* Vladimir Joseph Stephan Orlovsky, Jun 14 2011 *)

LinearRecurrence[{6, -15, 20, -15, 6, -1}, {2, 10, 31, 76, 161, 308}, 60] (* Harvey P. Dale, Oct 03 2012 *)

PROG

(PARI) conv(u, v)=local(w); w=vector(length(u), i, sum(j=1, i, u[j]*v[i+1-j])); w; t(n)=n*(n+1)/2; u=vector(10, i, t(i)); v=vector(10, i, t(i)+1); conv(u, v)

(MAGMA) [n*(n+1)*(n+2)*(n^2+7*n+32)/120: n in [1..40]]; // Vincenzo Librandi, Jun 15 2011

(PARI) Vec(x*(x^2-2*x+2)/(x-1)^6 + O(x^100)) \\ Colin Barker, Mar 18 2015

CROSSREFS

Cf. A000217, A000389, A005583.

Sequence in context: A281069 A156492 A090809 * A193008 A024456 A197452

Adjacent sequences:  A051744 A051745 A051746 * A051748 A051749 A051750

KEYWORD

easy,nonn

AUTHOR

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 07 1999

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 18 17:08 EST 2018. Contains 299325 sequences. (Running on oeis4.)