login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A051342 Smallest prime factor of 1 + (product of first n primes). 9
3, 7, 31, 211, 2311, 59, 19, 347, 317, 331, 200560490131, 181, 61, 167, 953, 73, 277, 223, 54730729297, 1063, 2521, 22093, 265739, 131, 2336993, 960703, 2297, 149, 334507, 5122427, 1543, 1951, 881, 678279959005528882498681487, 87549524399, 23269086799180847 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Based on Euclid's proof that there are infinitely many primes.

LINKS

Amiram Eldar, Table of n, a(n) for n = 1..87

M. Kraitchik, On the divisibility of factorials, Scripta Math., 14 (1948), 24-26 (but beware errors). [Annotated scanned copy]

Hisanori Mishima, Factorizations of many number sequences

Hisanori Mishima, Factorizations of many number sequences

R. G. Wilson v, Explicit factorizations

FORMULA

a(n) = A020639(1+A002110(n)).

MAPLE

a:= proc(n)

local N, F, i;

  N:= 1 + mul(ithprime(i), i=1..n);

  F:= select(type, map(t->t[1], ifactors(N, easy)[2]), integer);

if nops(F) >= 1 then return min(F) fi;

  min(map(t->t[1], ifactors(N)[2]))

end proc:

seq(a(n), n=1..40); # Robert Israel, Oct 19 2014

MATHEMATICA

Map[FactorInteger,

   Table[Product[Prime[n], {n, 1, m}] + 1, {m, 1, 36}]][[All,

1]][[All, 1]] (* Geoffrey Critzer, Oct 19 2014 *)

PROG

(PARI) a(n) = factor(1 + prod(i=1, n, prime(i)))[1, 1]; \\ Michel Marcus, Dec 10 2013

CROSSREFS

Cf. A014545, A002585.

Sequence in context: A141385 A059296 A123332 * A002585 A103785 A289127

Adjacent sequences:  A051339 A051340 A051341 * A051343 A051344 A051345

KEYWORD

nonn,changed

AUTHOR

Labos Elemer

EXTENSIONS

One more term from Michel Marcus, Dec 10 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 15 22:25 EDT 2019. Contains 328038 sequences. (Running on oeis4.)