login
Smallest prime factor of 1 + (product of first n primes).
9

%I #23 Oct 08 2021 19:03:26

%S 3,7,31,211,2311,59,19,347,317,331,200560490131,181,61,167,953,73,277,

%T 223,54730729297,1063,2521,22093,265739,131,2336993,960703,2297,149,

%U 334507,5122427,1543,1951,881,678279959005528882498681487,87549524399,23269086799180847

%N Smallest prime factor of 1 + (product of first n primes).

%C Based on Euclid's proof that there are infinitely many primes.

%H Amiram Eldar, <a href="/A051342/b051342.txt">Table of n, a(n) for n = 1..87</a>

%H M. Kraitchik, <a href="/A002582/a002582.pdf">On the divisibility of factorials</a>, Scripta Math., 14 (1948), 24-26 (but beware errors). [Annotated scanned copy]

%H Hisanori Mishima, <a href="http://www.asahi-net.or.jp/~KC2H-MSM/mathland/matha1/matha102.htm">Factorizations of many number sequences</a>

%H Hisanori Mishima, <a href="http://www.asahi-net.or.jp/~KC2H-MSM/mathland/matha1/matha103.htm">Factorizations of many number sequences</a>

%H R. G. Wilson v, <a href="/A038507/a038507.txt">Explicit factorizations</a>

%F a(n) = A020639(1+A002110(n)).

%p a:= proc(n)

%p local N, F, i;

%p N:= 1 + mul(ithprime(i),i=1..n);

%p F:= select(type,map(t->t[1],ifactors(N,easy)[2]),integer);

%p if nops(F) >= 1 then return min(F) fi;

%p min(map(t->t[1],ifactors(N)[2]))

%p end proc:

%p seq(a(n),n=1..40); # _Robert Israel_, Oct 19 2014

%t Map[FactorInteger,

%t Table[Product[Prime[n], {n, 1, m}] + 1, {m, 1, 36}]][[All,

%t 1]][[All, 1]] (* _Geoffrey Critzer_, Oct 19 2014 *)

%t FactorInteger[#][[1,1]]&/@(FoldList[Times,Prime[Range[40]]]+1) (* _Harvey P. Dale_, Oct 08 2021 *)

%o (PARI) a(n) = factor(1 + prod(i=1, n, prime(i)))[1, 1]; \\ _Michel Marcus_, Dec 10 2013

%Y Cf. A014545, A002585.

%K nonn

%O 1,1

%A _Labos Elemer_

%E One more term from _Michel Marcus_, Dec 10 2013