login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A050531
Number of multigraphs with loops on 3 nodes with n edges.
10
1, 2, 6, 14, 28, 52, 93, 152, 242, 370, 546, 784, 1103, 1512, 2040, 2706, 3534, 4554, 5803, 7304, 9108, 11252, 13780, 16744, 20205, 24206, 28826, 34126, 40176, 47056, 54857, 63648, 73542, 84630, 97014, 110808, 126139, 143108, 161868, 182546, 205282
OFFSET
0,2
COMMENTS
a(n) is also the number of multigraphs (no loops allowed) on 3 nodes with n edges of two colors. - Geoffrey Critzer, Aug 10 2015
LINKS
FORMULA
G.f.: (x^6+x^4+2*x^3+x^2+1)/((x^3-1)^2*(x^2-1)^2*(x-1)^2).
a(n) = ceiling((-1)^n*A076118(n+1)/9+(-1)^n*n/32+(4009/4320)*n+(1/2)*n^2+(5/36)*n^3+(1/48)*n^4+(1/720)*n^5). - Robert Israel, Aug 07 2015
a(n) = (A+B+C)/6 where A = binomial(n+5,5); B = (n+2)*(n+3)*(n+4)/8 if n even, B = (n+1)*(n+3)*(n+5)/8 if n odd; C = 2*((n/3) + 1) if n divisible by 3, C = 0 if n not divisible by 3. - David Pasino, Jul 06 2019
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - 3*a(n-4) + 6*a(n-6) - 3*a(n-8) - 2*a(n-9) + a(n-10) + 2*a(n-11) - a(n-12) for n>11. - Colin Barker, Jul 07 2019
MAPLE
a076118:= gfun:-rectoproc({a(n+4) = 2*a(n+3)-3*a(n+2)+2*a(n+1)-a(n), a(0)=0, a(1)=1, a(2)=1, a(3)=-1}, a(n), remember):
f:= n -> ceil((-1)^n*a076118(n+1)/9+(-1)^n*n/32+(4009/4320)*n+(1/2)*n^2+(5/36)*n^3+(1/48)*n^4+(1/720)*n^5):
map(f, [$0..100]); # Robert Israel, Aug 07 2015
MATHEMATICA
<<Combinatorica`
nn=30; n=3; CoefficientList[Series[CycleIndex[Join[PairGroup[SymmetricGroup[n]], Permutations[Range[n*(n - 1)/2 + 1, n*(n + 1)/2]], 2], s] /.Table[s[i] -> 1/(1 - x^i), {i, 1, n^2 - n}], {x, 0, nn}], x] (* Geoffrey Critzer, Aug 07 2015 *)
CoefficientList[Series[(x^6 + x^4 + 2 x^3 + x^2 + 1)/((x^3 - 1)^2 (x^2 - 1)^2 (x - 1)^2), {x, 0, 45}], x] (* Vincenzo Librandi, Aug 08 2015 *)
PROG
(PARI) Vec((x^6+x^4+2*x^3+x^2+1)/((x^3-1)^2*(x^2-1)^2*(x-1)^2) + O(x^40)) \\ Colin Barker, Jul 07 2019
CROSSREFS
Column k=3 of A290428.
Sequence in context: A256058 A294867 A033547 * A290699 A027083 A249665
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Dec 29 1999
STATUS
approved