login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A050533 Thickened pyramidal numbers: a(n) = sum(4*i*(i-1)+1, i=1..n) + 2*(n+1)*n. 3
0, 5, 22, 59, 124, 225, 370, 567, 824, 1149, 1550, 2035, 2612, 3289, 4074, 4975, 6000, 7157, 8454, 9899, 11500, 13265, 15202, 17319, 19624, 22125, 24830, 27747, 30884, 34249, 37850, 41695, 45792, 50149, 54774, 59675, 64860, 70337, 76114, 82199 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

This sequence is the partial sums of A053755. - J. M. Bergot, May 31 2012

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).

FORMULA

a(n) = 1/3*n*(5+6*n+4*n^2) = binomial(2*n+1, 3)+2*(n+1)*n = A000447(n)+4*A000217(n).

G.f.: x*(5+2*x+x^2)/(1-x)^4. [Colin Barker, Apr 16 2012]

a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4). Vincenzo Librandi, Apr 27 2012

MATHEMATICA

CoefficientList[Series[x*(5+2*x+x^2)/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Apr 27 2012 *)

LinearRecurrence[{4, -6, 4, -1}, {0, 5, 22, 59}, 40] (* Harvey P. Dale, May 08 2012 *)

PROG

(PARI) a(n)=n*(4*n^2+6*n+5)/3 \\ Charles R Greathouse IV, Apr 16 2012

(MAGMA) I:=[0, 5, 22, 59]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Apr 27 2012

CROSSREFS

Cf. A000292, A000447, A000217, A050492.

Sequence in context: A245301 A256971 A273685 * A212094 A064836 A273311

Adjacent sequences:  A050530 A050531 A050532 * A050534 A050535 A050536

KEYWORD

nonn,easy,nice

AUTHOR

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 29 1999

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 19 20:48 EST 2018. Contains 299357 sequences. (Running on oeis4.)