

A050499


Nearest integer to n/log(n).


11



3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,1


COMMENTS

The prime number theorem states that the number of primes <= x is asymptotic to x/log(x).
n/log(n)=n/log_10(n) * 1/log(10)=n*log_10(e)/log_10(n)=n*A002285/log_10(n) [From Eric Desbiaux, Jun 27 2009]
Similar to floor(1/(1x)) where x^n=1/n.  Jon Perry, Oct 29 2013


REFERENCES

Cf. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, Theorem 6.


LINKS

T. D. Noe, Table of n, a(n) for n=2..10000


MATHEMATICA

Table[Round[n/Log[n]], {n, 2, 80}] (* Harvey P. Dale, Nov 03 2013 *)


PROG

(JavaScript)
for (i=1; i<100; i++) {
x=Math.pow(1/i, 1/i);
document.write(Math.floor(1/(1x))+", ");
}


CROSSREFS

Cf. A000720, A050500, A050501.
Sequence in context: A209291 A176873 A227727 * A147752 A236682 A114227
Adjacent sequences: A050496 A050497 A050498 * A050500 A050501 A050502


KEYWORD

nonn


AUTHOR

N. J. A. Sloane, Dec 27 1999


STATUS

approved



