

A176873


Smallest possible integer m>=3 such that n is the sum of an mgonal number and a kgonal number for some k<=m.


2



3, 3, 3, 3, 3, 4, 3, 3, 4, 3, 3, 3, 3, 3, 4, 3, 3, 4, 3, 4, 3, 3, 3, 5, 3, 3, 4, 3, 3, 3, 3, 3, 4, 5, 3, 4, 3, 3, 3, 3, 4, 4, 3, 3, 4, 3, 3, 5, 3, 3, 4, 3, 4, 4, 4, 3, 3, 3, 3, 4, 3, 3, 7, 5, 3, 3, 3, 3, 4, 3, 3, 4, 3, 3, 4, 4, 3, 4, 3, 3, 4, 3, 4, 3, 3, 4, 5, 3, 3, 4, 3, 3, 3, 3, 3, 4, 4, 3, 4, 3, 3, 3, 3, 4, 4
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


LINKS

Charles R Greathouse IV, Table of n, a(n) for n = 0..10000


FORMULA

a(n) = min max(A176774(i),A176774(ni)), where min is taken over i=0,1,...,n under the assumption that A176774(2) = +infinity.


PROG

(PARI) a(n)=if(ispolygonal(n, 3)  ispolygonal(n1, 3), return(3)); for(m=3, if(n>5, (n+1)\2, 4), my(i=2, t); while((t=n(m2)*binomial(i, 2)i)>=0, for(k=3, m, if(ispolygonal(t, k), return(m))); i++)) \\ Charles R Greathouse IV, Dec 11 2015


CROSSREFS

Cf. A176774, A176874.
Sequence in context: A283986 A105159 A209291 * A227727 A050499 A304431
Adjacent sequences: A176870 A176871 A176872 * A176874 A176875 A176876


KEYWORD

nonn


AUTHOR

Max Alekseyev, Apr 27 2010


STATUS

approved



