OFFSET
1,2
COMMENTS
Except for the first term, all terms are primes because for n > 1, n divides (n-1)! + 1 iff n is prime. There are no other terms up to 6550 and the corresponding next prime has more than 22150 digits.
No more terms below 30941.
LINKS
Mike Oakes, posting to Number Theory List, Aug 20 2003
Jonathan Sondow, Lerch Quotients, Lerch Primes, Fermat-Wilson Quotients, and the Wieferich-non-Wilson Primes 2, 3, 14771, in Proceedings of CANT 2011, arXiv:1110.3113 [math.NT], 2011-2012.
Jonathan Sondow, Lerch Quotients, Lerch Primes, Fermat-Wilson Quotients, and the Wieferich-non-Wilson Primes 2, 3, 14771, Combinatorial and Additive Number Theory, CANT 2011 and 2012, Springer Proc. in Math. & Stat., vol. 101 (2014), pp. 243-255.
Javier Soria, posting to Number Theory List, Apr 08 2003
FORMULA
((a(n)-1)! + 1)/a(n) = A122696(n) = A007619(A000720(A050299(n))) for n > 1. - Jonathan Sondow, Aug 07 2011
a(n) = prime(A225906(n-1)) for n > 1. - Jonathan Sondow, May 20 2013
EXAMPLE
7 is in the sequence because (6!+1)/7=103 is prime.
MATHEMATICA
v={1}; Do[If[PrimeQ[((Prime[n]-1)!+1)/Prime[n]], v=Append[v, Prime[n]]; Print[v]], {n, 845}]
Select[Range[2630], PrimeQ[((#-1)!+1)/#]&] (* Harvey P. Dale, Aug 18 2024 *)
PROG
(PARI) is(n)=((n-1)!+1)%n==0 && isprime(((n-1)!+1)/n) \\ Anders Hellström, Nov 22 2015
CROSSREFS
KEYWORD
nonn,more,changed
AUTHOR
N. J. A. Sloane, Apr 09 2003
EXTENSIONS
1321 and 2621 from Mike Oakes, Aug 20 2003
Additional comments from Farideh Firoozbakht, Mar 19 2004
STATUS
approved