This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A050224 1/2-Smith numbers. 4
 88, 169, 286, 484, 598, 682, 808, 844, 897, 961, 1339, 1573, 1599, 1878, 1986, 2266, 2488, 2626, 2662, 2743, 2938, 3193, 3289, 3751, 3887, 4084, 4444, 4642, 4738, 4804, 4972, 4976, 4983, 5566, 5665, 5764, 5797, 5863 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 REFERENCES McDaniel, W. L., "The existence of infinitely many k- Smith numbers", Fibonacci Quarterly, 25(1987), pp. 76-80. LINKS Harvey P. Dale, Table of n, a(n) for n = 1..1000 S. S. Gupta, Smith Numbers. Eric Weisstein's World of Mathematics, Smith Numbers EXAMPLE 88 is a 2^(-1) Smith number because digit sum of 88 i.e. S(88) = 8 + 8=16, which is equal to twice the sum of the digits of its prime factors i.e. 2 * Sp (88) = 2 * Sp (11 * 2 * 2 * 2) = 2 *( 1 + 1 + 2 + 2 + 2) = 16. MATHEMATICA snoQ[n_]:=Total[IntegerDigits[n]]==2Total[Flatten[IntegerDigits/@ Flatten[ Table[First[#], {Last[#]}]&/@FactorInteger[n]]]]; Select[Range[ 6000], snoQ] (* Harvey P. Dale, Oct 15 2011 *) CROSSREFS Cf. A006753, A050225. Sequence in context: A226587 A044258 A044639 * A270299 A043522 A044420 Adjacent sequences:  A050221 A050222 A050223 * A050225 A050226 A050227 KEYWORD nonn,base AUTHOR EXTENSIONS More terms from Shyam Sunder Gupta, Mar 11 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 14 09:20 EST 2018. Contains 318091 sequences. (Running on oeis4.)