login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A049567
Primes p such that x^35 = 2 has a solution mod p.
2
2, 3, 5, 7, 13, 17, 19, 23, 37, 47, 53, 59, 67, 73, 79, 83, 89, 97, 103, 107, 109, 137, 139, 149, 151, 157, 163, 167, 173, 179, 193, 199, 223, 227, 229, 233, 241, 251, 257, 263, 269, 277, 283, 293, 307, 313, 317, 347, 349, 353, 359, 367, 373, 383, 389, 397, 409
OFFSET
1,1
COMMENTS
Complement of A059337 relative to A000040. - Vincenzo Librandi, Sep 14 2012
MATHEMATICA
ok[p_]:= Reduce[Mod[x^35 - 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[100]], ok] (* Vincenzo Librandi, Sep 14 2012 *)
PROG
(Magma) [p: p in PrimesUpTo(500) | exists(t){x : x in ResidueClassRing(p) | x^35 eq 2}]; // Vincenzo Librandi, Sep 14 2012
(PARI)
N=10^4; default(primelimit, N);
ok(p, r, k)={ return ( (p==r) || (Mod(r, p)^((p-1)/gcd(k, p-1))==1) ); }
forprime(p=2, N, if (ok(p, 2, 35), print1(p, ", ")));
/* Joerg Arndt, Sep 21 2012 */
CROSSREFS
Sequence in context: A356445 A233577 A233041 * A293048 A134204 A134207
KEYWORD
nonn,easy
STATUS
approved