login
Primes p such that x^35 = 2 has a solution mod p.
2

%I #18 Sep 08 2022 08:44:58

%S 2,3,5,7,13,17,19,23,37,47,53,59,67,73,79,83,89,97,103,107,109,137,

%T 139,149,151,157,163,167,173,179,193,199,223,227,229,233,241,251,257,

%U 263,269,277,283,293,307,313,317,347,349,353,359,367,373,383,389,397,409

%N Primes p such that x^35 = 2 has a solution mod p.

%C Complement of A059337 relative to A000040. - _Vincenzo Librandi_, Sep 14 2012

%H R. J. Mathar, <a href="/A049567/b049567.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Pri#smp">Index entries for related sequences</a>

%t ok[p_]:= Reduce[Mod[x^35 - 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[100]], ok] (* _Vincenzo Librandi_, Sep 14 2012 *)

%o (Magma) [p: p in PrimesUpTo(500) | exists(t){x : x in ResidueClassRing(p) | x^35 eq 2}]; // _Vincenzo Librandi_, Sep 14 2012

%o (PARI)

%o N=10^4; default(primelimit,N);

%o ok(p, r, k)={ return ( (p==r) || (Mod(r,p)^((p-1)/gcd(k,p-1))==1) ); }

%o forprime(p=2,N, if (ok(p,2,35),print1(p,", ")));

%o /* _Joerg Arndt_, Sep 21 2012 */

%Y Cf. A000040, A059337.

%K nonn,easy

%O 1,1

%A _N. J. A. Sloane_