login
A049565
Primes p such that x^33 = 2 has a solution mod p.
2
2, 3, 5, 11, 17, 29, 31, 41, 43, 47, 53, 59, 71, 83, 101, 107, 109, 113, 127, 131, 137, 149, 157, 167, 173, 179, 191, 197, 223, 227, 229, 233, 239, 251, 257, 263, 269, 277, 281, 283, 293, 307, 311, 317, 347, 359, 383, 389, 401, 431, 433, 439, 443, 449, 457
OFFSET
1,1
COMMENTS
Complement of A059335 relative to A000040. - Vincenzo Librandi, Sep 14 2012
MATHEMATICA
ok[p_]:= Reduce[Mod[x^33 - 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[100]], ok] (* Vincenzo Librandi, Sep 14 2012 *)
PROG
(Magma) [p: p in PrimesUpTo(500) | exists(t){x : x in ResidueClassRing(p) | x^33 eq 2}]; // Vincenzo Librandi, Sep 14 2012
CROSSREFS
Sequence in context: A211204 A023206 A359555 * A094480 A215013 A318786
KEYWORD
nonn,easy
STATUS
approved