login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A049354
Digitally balanced numbers in base 3: equal numbers of 0's, 1's, 2's.
15
11, 15, 19, 21, 260, 266, 268, 278, 290, 294, 302, 304, 308, 312, 316, 318, 332, 344, 348, 380, 384, 396, 410, 412, 416, 420, 424, 426, 434, 438, 450, 460, 462, 468, 500, 502, 508, 518, 520, 524, 528, 532, 534, 544, 550, 552, 572, 574, 578, 582, 586, 588, 596
OFFSET
1,1
LINKS
FORMULA
A062756(a(n)) = A077267(a(n)) and A081603(a(n)) = A077267(a(n)). - Reinhard Zumkeller, Aug 09 2014
MATHEMATICA
Select[Range[600], Length[Union[DigitCount[#, 3]]]== 1&]
FromDigits[#, 3]&/@DeleteCases[Flatten[Permutations/@Table[PadRight[{}, 3n, {1, 0, 2}], {n, 3}], 1], _?(#[[1]]==0&)]//Sort (* Harvey P. Dale, May 30 2016 *)
Select[Range@5000, Differences@DigitCount[#, 3]=={0, 0}&] (* Hans Rudolf Widmer, Dec 11 2021 *)
PROG
(Haskell)
a049354 n = a049354_list !! (n-1)
a049354_list = filter f [1..] where
f n = t0 == a062756 n && t0 == a081603 n where t0 = a077267 n
-- Reinhard Zumkeller, Aug 09 2014
(Python)
from sympy.ntheory import count_digits
def ok(n): c = count_digits(n, 3); return c[0] == c[1] == c[2]
print([k for k in range(600) if ok(k)]) # Michael S. Branicky, Nov 15 2021
CROSSREFS
Cf. A049354-A049360. See also A061854, A037861.
Row n = 3 of A378000.
Sequence in context: A333488 A053675 A031944 * A343823 A105179 A120156
KEYWORD
nonn,base
STATUS
approved