login
A343823
Numbers k > 10 such that every permutation of the digits of k is congruent to 3 (mod 4).
0
11, 15, 19, 51, 55, 59, 91, 95, 99, 111, 115, 119, 151, 155, 159, 191, 195, 199, 511, 515, 519, 551, 555, 559, 591, 595, 599, 911, 915, 919, 951, 955, 959, 991, 995, 999, 1111, 1115, 1119, 1151, 1155, 1159, 1191, 1195, 1199, 1511, 1515, 1519, 1551, 1555, 1559
OFFSET
11,1
COMMENTS
Also numbers that contain only the digits 1,5,9. More general : Numbers k > 10 such that every permutation of the digits of k is congruent to r (mod m). For m = 4; r = 0 gives A343810, r = 1 gives A143967, r = 2 gives A284632, r = 3 gives this sequence.
EXAMPLE
159 = 4*39 + 3, 195 = 4*48 + 3, 519 = 4*104 + 3, 591 = 4*147 + 3, 915 = 4*228 + 3, 951 = 4*237 + 3.
MATHEMATICA
Select[Range[11, 1600], AllTrue[Permutations[IntegerDigits[#]], Mod[FromDigits[#1], 4] == 3 &] &] (* Amiram Eldar, Apr 30 2021 *)
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Ctibor O. Zizka, Apr 30 2021
STATUS
approved