This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A049330 Numerator of (1/Pi)*Integral_{0..inf} (sin x / x)^n dx. 6
 1, 1, 3, 1, 115, 11, 5887, 151, 259723, 15619, 381773117, 655177, 20646903199, 27085381, 467168310097, 2330931341, 75920439315929441, 12157712239, 5278968781483042969, 37307713155613, 9093099984535515162569 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS The subsequence of primes in the unsorted order of occurrence begins (through n=100, the last and largest in that range has n=63): 3, 11, 151, 259723, 15619, 27085381, 3607856726470666022715979, 162393536899851293236257827401317071582797663083205707005010585853997149812190935313632896689565597 - Jonathan Vos Post, Feb 05 2011 LINKS T. D. Noe, Table of n, a(n) for n=1..100 Iskander Aliev, Siegel's Lemma and Sum-Distinct Sets, (2005) arXiv:math/0503115 [math.NT]; Discrete and Computational Geometry, Volume 39, Numbers 1-3 / March, 2008. [Added by N. J. A. Sloane, Jul 09 2009] R. Baillie, D. Borwein and J. M. Borwein, Surprising Sinc Sums and Integrals, Amer. Math. Monthly, 115 (2008), 888-901. A. H. R. Grimsey, On the accumulation of chance effects and the Gaussian frequency distribution, Phil. Mag., 36 (1945), 294-295. R. G. Medhurst and J. H. Roberts, Evaluation of the integral I_n(b) = (2/Pi)*Integral_{0..inf} (sin x / x)^n cos (bx) dx, Math. Comp., 19 (1965), 113-117. Eric Weisstein's World of Mathematics, Sinc Function EXAMPLE 1/2, 1/2, 3/8, 1/3, 115/384, 11/40, ... MATHEMATICA Numerator[Table[Integrate[(Sin[x]/x)^n, {x, 0, \[Infinity]}]/Pi, {n, 25}]] (* Harvey P. Dale, Jan 01 2013 *) Numerator@Table[Sum[(-1)^k (n-2k)^(n-1) Binomial[n, k], {k, 0, n/2}]/((n-1)! 2^n), {n, 1, 30}] (* Vladimir Reshetnikov, Sep 02 2016 *) CROSSREFS Cf. A049331. Same as A002297 except for n=4 term. Cf. also A002304, A002305. Sequence in context: A241191 A221195 A071291 * A274040 A266363 A068542 Adjacent sequences:  A049327 A049328 A049329 * A049331 A049332 A049333 KEYWORD nonn,frac,easy,nice AUTHOR N. J. A. Sloane, Mark S. Riggs (msr1(AT)ra.msstate.edu), Dec 11 1999 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 14 17:58 EST 2019. Contains 329979 sequences. (Running on oeis4.)