login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002305 Denominators of coefficients in asymptotic expansion of (2/Pi)*Integral_{0..inf} (sin x / x)^n dx.
(Formerly M5106 N2211)
5
1, 20, 1120, 3200, 3942400, 66560000, 10035200000, 136478720000, 268461670400000, 56518246400000, 23658537943040000000, 51431604224000000, 70718455808000000, 102541760921600000, 23292891381760000000, 8879987916800000, 144993552704000000, 1072952290009600000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Table of n, a(n) for n=0..17.

David H. Bailey and Jonathan M. Borwein, Experimental computation with oscillatory integrals, Gems in experimental mathematics, 25-40, Contemp. Math., 517, Amer. Math. Soc., Providence, RI, 2010. [Added by N. J. A. Sloane, Nov 02 2009]

R. G. Medhurst and J. H. Roberts, Evaluation of the integral I_n(b) = (2/pi)*Integral_{0..inf} (sin x / x)^n cos (bx) dx, Math. Comp., 19 (1965), 113-117.

MATHEMATICA

nmax = 20; Denominator[CoefficientList[Simplify[Sum[3^k*(2*k)!/(k!*2^k*n^k) * SeriesCoefficient[Exp[n*(x^2/6 + Sum[(-1)^m*BernoulliB[2*m]* 2^(2*m - 1)*(x^(2*m)/(m*(2*m)!)), {m, 1, k}])], {x, 0, 2*k}], {k, 0, nmax}]], 1/n]] (* Vaclav Kotesovec, Aug 10 2019 *)

CROSSREFS

Cf. A002304, A002297, A002298.

Sequence in context: A324416 A177596 A210835 * A091535 A265654 A152130

Adjacent sequences:  A002302 A002303 A002304 * A002306 A002307 A002308

KEYWORD

nonn,frac

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from Vaclav Kotesovec, Aug 10 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 15 20:04 EDT 2019. Contains 328037 sequences. (Running on oeis4.)