This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A002305 Denominators of coefficients in asymptotic expansion of (2/Pi)*Integral_{0..inf} (sin x / x)^n dx. (Formerly M5106 N2211) 5
 1, 20, 1120, 3200, 3942400, 66560000, 10035200000, 136478720000, 268461670400000, 56518246400000, 23658537943040000000, 51431604224000000, 70718455808000000, 102541760921600000, 23292891381760000000, 8879987916800000, 144993552704000000, 1072952290009600000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 REFERENCES N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS David H. Bailey and Jonathan M. Borwein, Experimental computation with oscillatory integrals, Gems in experimental mathematics, 25-40, Contemp. Math., 517, Amer. Math. Soc., Providence, RI, 2010. [Added by N. J. A. Sloane, Nov 02 2009] R. G. Medhurst and J. H. Roberts, Evaluation of the integral I_n(b) = (2/pi)*Integral_{0..inf} (sin x / x)^n cos (bx) dx, Math. Comp., 19 (1965), 113-117. MATHEMATICA nmax = 20; Denominator[CoefficientList[Simplify[Sum[3^k*(2*k)!/(k!*2^k*n^k) * SeriesCoefficient[Exp[n*(x^2/6 + Sum[(-1)^m*BernoulliB[2*m]* 2^(2*m - 1)*(x^(2*m)/(m*(2*m)!)), {m, 1, k}])], {x, 0, 2*k}], {k, 0, nmax}]], 1/n]] (* Vaclav Kotesovec, Aug 10 2019 *) CROSSREFS Cf. A002304, A002297, A002298. Sequence in context: A324416 A177596 A210835 * A091535 A265654 A152130 Adjacent sequences:  A002302 A002303 A002304 * A002306 A002307 A002308 KEYWORD nonn,frac AUTHOR EXTENSIONS More terms from Vaclav Kotesovec, Aug 10 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 20:04 EDT 2019. Contains 328037 sequences. (Running on oeis4.)