login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002304 Numerators of coefficients in asymptotic expansion of (2/Pi)*Integral_{0..inf} (sin x / x)^n dx.
(Formerly M2939 N1182)
5
1, -3, -13, 27, 52791, 482427, -124996631, -5270328789, -7479063506161, 6921977624613, 10703530420192887741, -31023547697719285017327, 4502691897987538544182239, -201974203900639732887399429, 632827656013898657214770949567, -1732419272534268233524732551 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Table of n, a(n) for n=0..15.

David H. Bailey and Jonathan M. Borwein, Experimental computation with oscillatory integrals, Comtemp. Math. 517 (2010) page 25 -40. [Added by N. J. A. Sloane, Nov 02 2009]

R. G. Medhurst and J. H. Roberts, Evaluation of the integral I_n(b) = (2/pi)*Integral_{0..inf} (sin x / x)^n cos (bx) dx, Math. Comp., 19 (1965), 113-117.

MATHEMATICA

nmax = 20; Numerator[CoefficientList[Simplify[Sum[3^k*(2*k)!/(k!*2^k*n^k) * SeriesCoefficient[Exp[n*(x^2/6 + Sum[(-1)^m*BernoulliB[2*m]* 2^(2*m - 1)*(x^(2*m)/(m*(2*m)!)), {m, 1, k}])], {x, 0, 2*k}], {k, 0, nmax}]], 1/n]] (* Vaclav Kotesovec, Aug 10 2019 *)

CROSSREFS

Cf. A002305, A002297, A002298.

Sequence in context: A196014 A266215 A192535 * A117516 A075726 A296776

Adjacent sequences:  A002301 A002302 A002303 * A002305 A002306 A002307

KEYWORD

sign,frac

AUTHOR

N. J. A. Sloane.

EXTENSIONS

Signs added by N. J. A. Sloane, Nov 02 2009

More terms from Vaclav Kotesovec, Aug 10 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 22:47 EDT 2019. Contains 328315 sequences. (Running on oeis4.)