OFFSET
1,2
COMMENTS
As n increases, this sequence is approximately geometric with common ratio r = lim_{n->oo} a(n)/a(n-1) = (6 + sqrt(35))^2 = 71 + 12*sqrt(35). - Ant King, Jan 01 2012
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..200
Eric Weisstein's World of Mathematics, Nonagonal Heptagonal number.
Index entries for linear recurrences with constant coefficients, signature (143,-143,1).
FORMULA
G.f.: -x*(1 - 55*x + 4*x^2) / ( (x-1)*(x^2 - 142*x + 1) ). - R. J. Mathar, Dec 21 2011
a(n) = (50 + (25-3r)*(6+r)^(2n-1) + (25+3r)*(6-r)^(2n-1))/140, where r=sqrt(35). - Bruno Berselli, Dec 21 2011
From Ant King, Jan 01 2012: (Start)
a(n) = 142*a(n-1) - a(n-2) - 50.
a(n) = ceiling(1/140*(45 + 7*sqrt(35))*(6 + sqrt(35))^(2*n - 2)). (End)
MATHEMATICA
LinearRecurrence[{143, -143, 1}, {1, 88, 12445}, 30] (* Vincenzo Librandi, Dec 21 2011 *)
PROG
(Magma) I:=[1, 88, 12445]; [n le 3 select I[n] else 143*Self(n-1)-143*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Dec 21 2011
(Maxima) makelist(expand((50+(25-3*sqrt(35))*(6+sqrt(35))^(2*n-1)+(25+3*sqrt(35))*(6-sqrt(35))^(2*n-1))/140), n, 1, 12); /* Bruno Berselli, Dec 21 2011 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved