login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A048918 9-gonal hexagonal numbers. 3
1, 325, 5330229625, 1353857339341, 22184715227362706161, 5634830324997758086741, 92334031424171069457850940521, 23452480456295952079681300143325, 384299427405961840930468013697980089825, 97610541547790513644729906482502335077221 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

As n increases, the ratio of consecutive terms forms an approximate 2-cycle with the ratio a(n)/a(n-1) bounded above and below by 8193151+3096720*sqrt(7) and 127+48*sqrt(7) respectively. - Ant King, Dec 27 2011

LINKS

Colin Barker, Table of n, a(n) for n = 1..208

Eric Weisstein's World of Mathematics, Nonagonal Hexagonal Number.

Index entries for linear recurrences with constant coefficients, signature (1,4162056194,-4162056194,-1,1).

FORMULA

From Ant King, Dec 28 2011: (Start)

G.f.: x*(1+324*x+1168173106*x^2+20902860*x^3+82621*x^4) / ((1-x)*(1-64514*x+x^2)*(1+64514*x+x^2)).

a(n) = 4162056194*a(n-2)-a(n-4)+1189158912.

a(n) = a(n-1)+4162056194*a(n-2)-4162056194*a(n-3)-a(n-4)+a(n-5).

a(n) = 1/112*(9*((8-3*sqrt(7)*(-1)^n)*(8+3*sqrt(7))^(4*n-4)+(8+3*sqrt(7)*(-1)^n)*(8-3*sqrt(7))^(4*n-4))-32).

a(n) = floor(9/112*(8-3*sqrt(7)*(-1)^n)*(8+3*sqrt(7))^(4*n-4)).

(End)

MATHEMATICA

LinearRecurrence[{1, 4162056194, -4162056194, -1, 1},  {1, 325, 5330229625, 1353857339341, 22184715227362706161}, 8] (* Ant King, Dec 27 2011 *)

PROG

(PARI) Vec(x*(1+324*x+1168173106*x^2+20902860*x^3+82621*x^4)/((1-x)*(1-64514*x+x^2)*(1+64514*x+x^2)) + O(x^20)) \\ Colin Barker, Jun 22 2015

CROSSREFS

Cf. A048916, A048917.

Sequence in context: A048909 A097739 A203188 * A274307 A031516 A066128

Adjacent sequences:  A048915 A048916 A048917 * A048919 A048920 A048921

KEYWORD

nonn,easy

AUTHOR

Eric W. Weisstein

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 7 05:36 EST 2016. Contains 278841 sequences.