OFFSET
1,2
COMMENTS
As n increases, this sequence is approximately geometric with common ratio r = lim_{n->infinity} a(n)/a(n-1) = (sqrt(6) + sqrt(7))^4 = 337 + 52*sqrt(42). - Ant King, Jan 03 2012
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..200
Eric Weisstein's World of Mathematics, Nonagonal Octagonal Numbers.
Index entries for linear recurrences with constant coefficients, signature (675,-675,1).
FORMULA
G.f.: -x*(1 - 250*x + 9*x^2) / ( (x-1)*(x^2 - 674*x + 1) ). - R. J. Mathar, Dec 21 2011
From Ant King, Jan 03 2012: (Start)
a(n) = 674*a(n-1) - a(n-2) - 240.
a(n) = (1/84)*((sqrt(6) + 3*sqrt(7))*(sqrt(6) + sqrt(7))^(4*n-3) + (sqrt(6) - 3*sqrt(7))*(sqrt(6) - sqrt(7))^(4*n-3) + 30).
a(n) = ceiling((1/84)*(sqrt(6) + 3*sqrt(7))*(sqrt(6) + sqrt(7))^(4*n-3)). (End)
MATHEMATICA
LinearRecurrence[{675, -675, 1}, {1, 425, 286209}, 30] (* Vincenzo Librandi, Dec 23 2011 *)
Join[{1}, Transpose[NestList[{Last[#], 674Last[#]-First[#]-240}&, {1, 425}, 10]][[2]]] (* Harvey P. Dale, Feb 05 2012 *)
PROG
(Magma) I:=[1, 425, 286209]; [n le 3 select I[n] else 675*Self(n-1)-675*Self(n-2)+1*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Dec 23 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved