login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A048902
Indices of heptagonal numbers (A000566) which are also hexagonal.
3
1, 221, 71065, 22882613, 7368130225, 2372515049741, 763942477886281, 245987105364332645, 79207083984837225313, 25504435056012222218045, 8212348880951950716985081, 2644350835231472118646977941
OFFSET
1,2
COMMENTS
As n increases, this sequence is approximately geometric with common ratio r = lim_{n->infinity} a(n)/a(n-1) = (2 + sqrt(5))^4 = 161 + 72*sqrt(5). - Ant King, Dec 26 2011
LINKS
Eric Weisstein's World of Mathematics, Heptagonal hexagonal number.
FORMULA
G.f.: -x*(1 - 102*x + 5*x^2) / ( (x-1)*(x^2 - 322*x + 1) ). - R. J. Mathar, Dec 21 2011
From Ant King, Dec 26 2011: (Start)
a(n) = 322*a(n-1) - a(n-2) - 96.
a(n) = (1/20)*((sqrt(5)+1)*(sqrt(5)+2)^(4*n-3) + (sqrt(5)-1)*(sqrt(5)-2)^(4*n-3) + 6).
a(n) = ceiling((1/20)*(sqrt(5)+1)*(sqrt(5)+2)^(4*n-3)).
(End)
MATHEMATICA
LinearRecurrence[{323, -323, 1}, {1, 221, 71065}, 12]; (* Ant King, Dec 26 2011 *)
PROG
(Magma) I:=[1, 221, 71065]; [n le 3 select I[n] else 323*Self(n-1)-323*Self(n-2)+Self(n-3): n in [1..20]]; // Vincenzo Librandi, Dec 28 2011
CROSSREFS
Sequence in context: A220737 A220723 A011816 * A210135 A013548 A300517
KEYWORD
nonn,easy
STATUS
approved