OFFSET
1,2
COMMENTS
As n increases, this sequence is approximately geometric with common ratio r = lim(n->Infinity,a(n)/a(n-1)) = (sqrt(5)+sqrt(6))^4 = 241+44*sqrt(30). - Ant King, Dec 30 2011
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..200
Eric Weisstein's World of Mathematics, Octagonal Heptagonal Number
Index entries for linear recurrences with constant coefficients, signature (483,-483,1).
FORMULA
G.f.: -x*(1-168*x+7*x^2) / ( (x-1)*(x^2-482*x+1) ). - R. J. Mathar, Dec 21 2011
From Ant King, Dec 30 2011: (Start)
a(n) = 482*a(n-1)-a(n-2)-160.
a(n) = 1/120*((2*sqrt(5)+5*sqrt(6))*(sqrt(5)+sqrt(6))^(4n-3)+ (2*sqrt(5)-5*sqrt(6))*(sqrt(5)-sqrt(6))^(4n-3)+40).
a(n) = ceiling(1/120*(2*sqrt(5)+5*sqrt(6))*(sqrt(5)+sqrt(6))^(4n-3)). (End)
MATHEMATICA
LinearRecurrence[{483, -483, 1}, {1, 315, 151669}, 20] (* Vincenzo Librandi, Dec 28 2011 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved