login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A048900 Heptagonal pentagonal numbers. 3
1, 4347, 16701685, 64167869935, 246532939589097, 947179489733441251, 3639063353022941697757, 13981280455134652269341655, 53716075869563980995868941265, 206377149509584359851476202998987, 792900954699747240985390576053167301 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

As n increases, this sequence is approximately geometric with common ratio r=lim(n->Infinity,a(n)/a(n-1))=(4+sqrt(15))^4=1921+496*sqrt(15). - Ant King, Dec 15 2011

LINKS

Colin Barker, Table of n, a(n) for n = 1..279

Eric Weisstein's World of Mathematics, Heptagonal Pentagonal Number.

Index entries for linear recurrences with constant coefficients, signature (3843,-3843,1).

FORMULA

From Ant King, Dec 15 2011: (Start)

a(n) = 3843*a(n-1) - 3843*a(n-2) + a(n-3).

a(n) = 3842*a(n-1) - a(n-2) + 512.

a(n) = 1/240*((2+sqrt(15))^2*(4+sqrt(15))^(4n-3)+ (2-sqrt(15))^2*(4-sqrt(15))^(4n-3)-32).

a(n) = floor(1/240*((2+sqrt(15))^2*(4+sqrt(15))^(4n-3))).

G.f.: x*(1+504*x+7*x^2)/((1-x)*(1-3842*x+x^2)).

(End)

MATHEMATICA

LinearRecurrence[{3843, -3843, 1}, {1, 4347, 16701685}, 10] (* Ant King, Dec 15 2011 *)

PROG

(PARI) Vec(-x*(7*x^2+504*x+1)/((x-1)*(x^2-3842*x+1)) + O(x^30)) \\ Colin Barker, Jun 23 2015

CROSSREFS

Cf. A046198, A046199.

Sequence in context: A252431 A251947 A145916 * A252302 A235066 A170786

Adjacent sequences:  A048897 A048898 A048899 * A048901 A048902 A048903

KEYWORD

nonn,easy

AUTHOR

Eric W. Weisstein

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 9 00:45 EST 2016. Contains 278959 sequences.