The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A048900 Heptagonal pentagonal numbers. 3
 1, 4347, 16701685, 64167869935, 246532939589097, 947179489733441251, 3639063353022941697757, 13981280455134652269341655, 53716075869563980995868941265, 206377149509584359851476202998987, 792900954699747240985390576053167301 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS As n increases, this sequence is approximately geometric with common ratio r=lim(n->Infinity,a(n)/a(n-1))=(4+sqrt(15))^4=1921+496*sqrt(15). - Ant King, Dec 15 2011 LINKS Colin Barker, Table of n, a(n) for n = 1..279 Eric Weisstein's World of Mathematics, Heptagonal Pentagonal Number. Index entries for linear recurrences with constant coefficients, signature (3843,-3843,1). FORMULA From Ant King, Dec 15 2011: (Start) a(n) = 3843*a(n-1) - 3843*a(n-2) + a(n-3). a(n) = 3842*a(n-1) - a(n-2) + 512. a(n) = 1/240*((2+sqrt(15))^2*(4+sqrt(15))^(4n-3)+ (2-sqrt(15))^2*(4-sqrt(15))^(4n-3)-32). a(n) = floor(1/240*((2+sqrt(15))^2*(4+sqrt(15))^(4n-3))). G.f.: x*(1+504*x+7*x^2)/((1-x)*(1-3842*x+x^2)). (End) MATHEMATICA LinearRecurrence[{3843, -3843, 1}, {1, 4347, 16701685}, 10] (* Ant King, Dec 15 2011 *) PROG (PARI) Vec(-x*(7*x^2+504*x+1)/((x-1)*(x^2-3842*x+1)) + O(x^30)) \\ Colin Barker, Jun 23 2015 CROSSREFS Cf. A046198, A046199. Sequence in context: A252431 A251947 A145916 * A294985 A252302 A235066 Adjacent sequences: A048897 A048898 A048899 * A048901 A048902 A048903 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 22:27 EST 2022. Contains 358671 sequences. (Running on oeis4.)