%I #17 Apr 18 2019 17:37:06
%S 0,3,2,6,4,1,2,1,9,2,1,2,3,2,3,5,1,2,1,1,6,1,2,5,79,6,4,5,1,1,1,1,12,
%T 1,1,2,5,1,659,2,17,1,5,2,3,2,6,1,1,2,3,1,2,6,1,1,3,11,1,1,2,1,1,2,4,
%U 11,2,1,3,4,2,2,1,3,1,71,1,1,1,19,1,4,1,1,8,1,49,3,1,2,2,11,1,11,10,1,2,1,1
%N Continued fraction for Product_{k >= 1} (1-1/2^k) (Cf. A048651).
%C Continued fraction expansion of the constant Product{k>=1} (1-1/2^k)^(-1) = 3.46274661945506361... (A065446) gives essentially the same sequence.
%D Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 354-361.
%H Harry J. Smith, <a href="/A048652/b048652.txt">Table of n, a(n) for n = 0..20000</a>
%H Steven R. Finch, <a href="http://www.people.fas.harvard.edu/~sfinch/constant/cntfrc/mnkwsk.html">Minkowski's Question Mark Function</a> [Broken link]
%H Steven R. Finch, <a href="http://web.archive.org/web/20010208143502/http://www.mathsoft.com/asolve/constant/cntfrc/mnkwsk.html">Minkowski's Question Mark Function</a> [From the Wayback machine]
%H G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a>
%H <a href="/index/Con#confC">Index entries for continued fractions for constants</a>
%e 0.2887880950866024212788997219294585937270...
%e 0.288788095086602421278899721... = 0 + 1/(3 + 1/(2 + 1/(6 + 1/(4 + ...)))). - _Harry J. Smith_, May 02 2009
%t ContinuedFraction[ N[ Product[ 1/(1 - 1/2^k), {k, 1, Infinity} ], 500 ], 49]
%o (PARI) { allocatemem(932245000); default(realprecision, 21000); x=prodinf(k=1, -1/2^k, 1); z=contfrac(x); for (n=1, 20001, write("b048652.txt", n-1, " ", z[n])); } \\ _Harry J. Smith_, May 07 2009
%Y Cf. A005329, A048651, A065446.
%K nonn,cofr
%O 0,2
%A _N. J. A. Sloane_
%E Corrected by _Harry J. Smith_, May 02 2009
%E Deleted old PARI program. - _Harry J. Smith_, May 20 2009