OFFSET
0,2
COMMENTS
n-th difference of a(n), a(n-1), ..., a(0) is (8, 8, 8, ...).
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (3,-2).
FORMULA
a(n) = 8 * 2^n - 7. - Ralf Stephan, Jan 09 2009
Equals binomial transform of [1, 8, 8, 8, ...]. - Gary W. Adamson, Apr 29 2008
a(n) = 2*a(n-1) + 7 for n > 0, a(0)=1. - Vincenzo Librandi, Aug 06 2010
For n>=1, a(n) = 6<+>(n+3), where the operation <+> is defined in A206853. - Vladimir Shevelev, Feb 17 2012
From Colin Barker, Nov 26 2014: (Start)
a(n) = 3*a(n-1) - 2*a(n-2).
G.f.: (6*x+1) / ((x-1)*(2*x-1)). (End)
MATHEMATICA
a=1; lst={a}; k=8; Do[a+=k; AppendTo[lst, a]; k+=k, {n, 0, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 16 2008 *)
PROG
(PARI) Vec((6*x+1)/((x-1)*(2*x-1)) + O(x^100)) \\ Colin Barker, Nov 26 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Colin Barker, Nov 26 2014
STATUS
approved