This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A206853 a(1)=1, for n>1, a(n) is the least number > a(n-1) such that the Hamming distance D(a(n-1), a(n)) = 2. 21
 1, 2, 4, 7, 11, 13, 14, 22, 26, 28, 31, 47, 55, 59, 61, 62, 94, 110, 118, 122, 124, 127, 191, 223, 239, 247, 251, 253, 254, 382, 446, 478, 494, 502, 506, 508, 511, 767, 895, 959, 991, 1007, 1015, 1019, 1021, 1022, 1534, 1790, 1918, 1982, 2014, 2030, 2038, 2042 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS For integers a, b, denote by a<+>b the least c>=a, such that D(a,c)=b (note that, generally speaking, a<+>b differs from b<+>a). Then a(n+1)=a(n)<+>2. Thus this sequence is a Hamming analog of odd numbers 1,3,5,... A Hamming analog of nonnegative integers is A000225 and a Hamming analog of the triangular numbers is A000975. All terms are odious (A000069). LINKS Alois P. Heinz, Table of n, a(n) for n = 1..1000 MAPLE read("transforms"); Hamming := proc(a, b)         XORnos(a, b) ;         wt(%) ; end proc: Dplus := proc(a, b)         for c from a to 1000000 do                 if Hamming(a, c)=b then                         return c;                 end if;         end do:         return -1 ; end proc: A206853 := proc(n)         option remember;         if n = 1 then                 1;         else                 Dplus(procname(n-1), 2) ;         end if; end proc: # R. J. Mathar, Apr 05 2012 MATHEMATICA myHammingDistance[n_, m_] := Module[{g = Max[m, n], h = Min[m, n]}, b1 = IntegerDigits[g, 2]; b2 = IntegerDigits[h, 2, Length[b1]]; HammingDistance[b1, b2]]; t = {1}; Do[If[myHammingDistance[t[[-1]], n] == 2, AppendTo[t, n]], {n, 2, 2042}]; t (* T. D. Noe, Mar 07 2012 *) t={x=1}; Do[i=x+1; While[Count[IntegerDigits[BitXor[x, i], 2], 1]!=2, i++]; AppendTo[t, x=i], {n, 53}]; t (* Jayanta Basu, May 26 2013 *) PROG (PARI) next_A206853(n)={my(b=binary(n)); until(norml2(binary(n)-b)==2, n++>=2^#b & b=concat(0, b)); n} print1(n=1); for(i=1, 99, print1(", "n=next_A206853(n)))  \\ M. F. Hasler, Apr 07 2012 CROSSREFS Cf. A000225, A205509, A205510, A205511, A205302, A205649, A205533, A122565, A206852, A000069. Cf. A207063 (with even binary weight). - Alois P. Heinz, Feb 16 2012 Sequence in context: A249594 A127575 A240106 * A229618 A087285 A107791 Adjacent sequences:  A206850 A206851 A206852 * A206854 A206855 A206856 KEYWORD nonn,base AUTHOR Vladimir Shevelev, Feb 13 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 14 19:39 EST 2018. Contains 318107 sequences. (Running on oeis4.)