The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A047967 Number of partitions of n with some part repeated. 30
 0, 0, 1, 1, 3, 4, 7, 10, 16, 22, 32, 44, 62, 83, 113, 149, 199, 259, 339, 436, 563, 716, 913, 1151, 1453, 1816, 2271, 2818, 3496, 4309, 5308, 6502, 7959, 9695, 11798, 14298, 17309, 20877, 25151, 30203, 36225, 43323, 51748, 61651, 73359, 87086, 103254, 122164 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Also number of partitions of n with at least one even part. - Vladeta Jovovic, Sep 10 2003. Example: a(5)=4 because we have [4,1], [3,2], [2,2,1] and [2,1,1,1] (, [3,1,1] and [1,1,1,1,1] do not qualify). - Emeric Deutsch, Mar 30 2006 Also number of partitions of n (where it is assumed that the least part is 0) such that at least one difference is at least two. Example: a(5)=4 because we have [5,0], [4,1,0], [3,2,0] and [3,1,1,0] ([2,2,1,0], [2,1,1,1,0] and [1,1,1,1,1,0] do not qualify). - Emeric Deutsch, Mar 30 2006 The Heinz numbers of these partitions (with some part repeated) are given by A013929. Equivalent to Vladeta Jovovic's comment, a(n) is also the number of integer partitions whose product of parts is even. The Heinz numbers of these latter partitions are given by A324929. - Gus Wiseman, Mar 23 2019 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 H. Bottomley, Illustration for A000009, A000041, A047967 FORMULA a(n) = A000041(n) - A000009(n). G.f.: sum(x^(2*k)*product(1+x^j, j=k+1..infinity)/product(1-x^j, j=1..k), k=1..infinity) = sum(x^(2k)/(product(1-x^j, j=1..2*k)*product(1-x^(2*j+1), j=k..infinity) ), k=1..infinity). - Emeric Deutsch, Mar 30 2006 G.f.: 1/P(x) - P(x^2)/P(x) where P(x)=prod(k>=1, 1-x^k ). - Joerg Arndt, Jun 21 2011 EXAMPLE a(5) = 4 because we have [3,1,1], [2,2,1], [2,1,1,1] and [1,1,1,1,1] (, [4,1] and [3,2] do not qualify). MAPLE g:=sum(x^(2*k)*product(1+x^j, j=k+1..70)/product(1-x^j, j=1..k), k=1..40): gser:=series(g, x=0, 50): seq(coeff(gser, x, n), n=0..44); # Emeric Deutsch, Mar 30 2006 MATHEMATICA Clear[fQ, fP, lst, n]; fQ[n_]:=PartitionsQ[n]; fP[n_]:=PartitionsP[n]; lst={}; Do[AppendTo[lst, fP[n]-fQ[n]], {n, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Sep 19 2009 *) Table[PartitionsP[n]-PartitionsQ[n], {n, 0, 50}] (* Harvey P. Dale, Jan 17 2019 *) PROG (PARI)  x='x+O('x^66); concat([0, 0], Vec(1/eta(x)-eta(x^2)/eta(x))) \\ Joerg Arndt, Jun 21 2011 CROSSREFS Cf. A038348, A261982. Column k=1 of A320264. Cf. A324847, A324929, A324966, A324967. Sequence in context: A004397 A324368 A241654 * A282893 A256912 A134591 Adjacent sequences:  A047964 A047965 A047966 * A047968 A047969 A047970 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 9 18:32 EDT 2020. Contains 336326 sequences. (Running on oeis4.)