The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A038348 Expansion of (1/(1-x^2))*Product_{m>=0} 1/(1-x^(2m+1)). 17
 1, 1, 2, 3, 4, 6, 8, 11, 14, 19, 24, 31, 39, 49, 61, 76, 93, 114, 139, 168, 203, 244, 292, 348, 414, 490, 579, 682, 801, 938, 1097, 1278, 1487, 1726, 1999, 2311, 2667, 3071, 3531, 4053, 4644, 5313, 6070, 6923, 7886, 8971, 10190, 11561 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Number of partitions of n+2 with exactly one even part. - Vladeta Jovovic, Sep 10 2003 Also, number of partitions of n with at most one even part. - Vladeta Jovovic, Sep 10 2003 Also total number of parts, counted without multiplicity, in all partitions of n into odd parts, offset 1. - Vladeta Jovovic, Mar 27 2005 a(n) = Sum_{k>=1} k*A116674(n+1,k). - Emeric Deutsch, Feb 22 2006 Equals row sums of triangle A173305. - Gary W. Adamson, Feb 15 2010 Equals partial sums of A025147 (observed by Jonathan Vos Post, proved by several correspondents). LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 Cristina Ballantine, Mircea Merca, On identities of Watson type, Ars Mathematica Contemporanea (2019) Vol. 17, 277-290. P. Flajolet and B. Salvy, Euler sums and contour integral representations, Experimental Mathematics, Vol. 7 Issue 1 (1998). J. Fulman, Random matrix theory over finite fields, Bull. Amer. Math. Soc. (N.S.), 39 (2002), no. 1, 51--85. MR1864086 (2002i:60012). See top of page 70, Eq. 2, with k=1. - N. J. A. Sloane, Aug 31 2014 Rebekah Ann Gilbert, A Fine Rediscovery, 2014. FORMULA a(n) = A036469(n) - a(n-1) = Sum_{k=0..n} (-1)^k*A036469(n-k). - Vladeta Jovovic, Sep 10 2003 a(n) = A000009(n) + a(n-2). - Vladeta Jovovic, Feb 10 2004 G.f.: 1/((1-x^2)*Product_{j>=1} (1 - x^(2*j-1))). - Emeric Deutsch, Feb 22 2006 From Vaclav Kotesovec, Aug 16 2015: (Start) a(n) ~ (1/2) * A036469(n). a(n) ~ 3^(1/4) * exp(Pi*sqrt(n/3)) / (4*Pi*n^(1/4)). (End) EXAMPLE From Gus Wiseman, Sep 23 2019: (Start) Also the number of integer partitions of n that are strict except possibly for any number of 1's. For example, the a(1) = 1 through a(7) = 11 partitions are:   (1)  (2)   (3)    (4)     (5)      (6)       (7)        (11)  (21)   (31)    (32)     (42)      (43)              (111)  (211)   (41)     (51)      (52)                     (1111)  (311)    (321)     (61)                             (2111)   (411)     (421)                             (11111)  (3111)    (511)                                      (21111)   (3211)                                      (111111)  (4111)                                                (31111)                                                (211111)                                                (1111111) (End) MAPLE f:=1/(1-x^2)/product(1-x^(2*j-1), j=1..32): fser:=series(f, x=0, 62): seq(coeff(fser, x, n), n=0..58); # Emeric Deutsch, Feb 22 2006 MATHEMATICA mmax = 47; CoefficientList[ Series[ (1/(1-x^2))*Product[1/(1-x^(2m+1)), {m, 0, mmax}], {x, 0, mmax}], x] (* Jean-François Alcover, Jun 21 2011 *) CROSSREFS Cf. A067588, A090867, A116674, A173305. Cf. A000009, A007360, A051424, A259936, A302569, A306200. Sequence in context: A261154 A233693 A003412 * A239467 A035945 A094707 Adjacent sequences:  A038345 A038346 A038347 * A038349 A038350 A038351 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 24 12:22 EST 2020. Contains 338612 sequences. (Running on oeis4.)