login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A047966 a(n) = Sum_{ d divides n } q(d), where q(d) = A000009 = number of partitions of d into distinct parts. 77
1, 2, 3, 4, 4, 8, 6, 10, 11, 15, 13, 25, 19, 29, 33, 42, 39, 62, 55, 81, 84, 103, 105, 153, 146, 185, 203, 253, 257, 344, 341, 432, 463, 552, 594, 747, 761, 920, 1003, 1200, 1261, 1537, 1611, 1921, 2089, 2410, 2591, 3095, 3270, 3815, 4138, 4769, 5121, 5972, 6394, 7367, 7974, 9066, 9793, 11305, 12077, 13736, 14940 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Number of partitions of n such that every part occurs with the same multiplicity. - Vladeta Jovovic, Oct 22 2004

Christopher and Christober call such partitions uniform. - Gus Wiseman, Apr 16 2018

Equals inverse Mobius transform (A051731) * A000009, where the latter begins (1, 1, 2, 2, 3, 4, 5, 6, 8, ...). -  Gary W. Adamson, Jun 08 2009

LINKS

T. D. Noe and Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)

A. David Christopher and M. Davamani Christober, Relatively Prime Uniform Partitions, Gen. Math. Notes, Vol. 13, No. 2, December, 2012, pp.1-12.

FORMULA

G.f.: Sum_{k>0} (-1+Product_{i>0} (1+z^(k*i))). - Vladeta Jovovic, Jun 22 2003

G.f.: Sum_{k>=1} q(k)*x^k/(1 - x^k), where q() = A000009. - Ilya Gutkovskiy, Jun 20 2018

a(n) ~ exp(Pi*sqrt(n/3)) / (4*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Aug 27 2018

EXAMPLE

The a(6) = 8 uniform partitions are (6), (51), (42), (33), (321), (222), (2211), (111111). - Gus Wiseman, Apr 16 2018

MAPLE

with(numtheory):

b:= proc(n) option remember; `if`(n=0, 1, add(add(

     `if`(d::odd, d, 0), d=divisors(j))*b(n-j), j=1..n)/n)

    end:

a:= n-> add(b(d), d=divisors(n)):

seq(a(n), n=1..100);  # Alois P. Heinz, Jul 11 2016

MATHEMATICA

b[n_] := b[n] = If[n==0, 1, Sum[DivisorSum[j, If[OddQ[#], #, 0]&]*b[n-j], {j, 1, n}]/n]; a[n_] := DivisorSum[n, b]; Table[a[n], {n, 1, 100}] (* Jean-Fran├žois Alcover, Dec 06 2016 after Alois P. Heinz *)

Table[DivisorSum[n, PartitionsQ], {n, 20}] (* Gus Wiseman, Apr 16 2018 *)

PROG

(PARI)

N = 66; q='q+O('q^N);

D(q)=eta(q^2)/eta(q); \\ A000009

Vec( sum(e=1, N, D(q^e)-1) ) \\ Joerg Arndt, Mar 27 2014

CROSSREFS

Cf. A000009, A000837, A024994, A047968, A063834, A279788, A289501, A300383, A301462, A302698.

Sequence in context: A236129 A240219 A028298 * A317085 A236543 A319079

Adjacent sequences:  A047963 A047964 A047965 * A047967 A047968 A047969

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 21 15:50 EDT 2020. Contains 337272 sequences. (Running on oeis4.)