login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A047948 Smallest of three consecutive primes with a difference of 6: primes p such that p+6 and p+12 are the next two primes. 24
47, 151, 167, 251, 257, 367, 557, 587, 601, 647, 727, 941, 971, 1097, 1117, 1181, 1217, 1361, 1741, 1747, 1901, 2281, 2411, 2671, 2897, 2957, 3301, 3307, 3631, 3727, 4007, 4451, 4591, 4651, 4987, 5101, 5107, 5297, 5381, 5387, 5557, 5801, 6067, 6257, 6311 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

T. D. Noe, Table of n, a(n) for n=1..1000

FORMULA

Let p(k) be the k-th prime; sequence gives p(n) such that p(n+2)-p(n+1)=p(n+1)-p(n)=6.

EXAMPLE

47 is a term as the next two primes are 53 and 59.

MATHEMATICA

ok[p_] := (q = NextPrime[p]) == p+6 && NextPrime[q] == q+6; Select[Prime /@ Range[1000], ok][[;; 45]] (* Jean-Fran├žois Alcover, Jul 11 2011 *)

Transpose[Select[Partition[Prime[Range[1000]], 3, 1], Differences[#]=={6, 6}&]] [[1]] (* Harvey P. Dale, Apr 25 2014 *)

PROG

(PARI) is_A047948(n)={nextprime(n+1)==n+6 && nextprime(n+7)==n+12 && isprime(n)} \\ Charles R Greathouse IV, Aug 17 2011, simplified by M. F. Hasler, Jan 13 2013

(PARI) p=2; q=3; forprime(r=5, 1e4, if(r-p==12&&q-p==6, print1(p", ")); p=q; q=r) \\ Charles R Greathouse IV, Aug 17 2011

CROSSREFS

Cf. A031924, A078853, A046789.

Cf. A033451 (four consecutive primes with difference 6)

Cf. A001223, A033451, A052197, A052198.

Sequence in context: A044379 A044760 A142505 * A142529 A142634 A140641

Adjacent sequences:  A047945 A047946 A047947 * A047949 A047950 A047951

KEYWORD

easy,nonn

AUTHOR

Enoch Haga

EXTENSIONS

Corrected by T. D. Noe, Mar 07 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified April 29 19:06 EDT 2017. Contains 285613 sequences.