This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A047948 Smallest of three consecutive primes with a difference of 6: primes p such that p+6 and p+12 are the next two primes. 25
 47, 151, 167, 251, 257, 367, 557, 587, 601, 647, 727, 941, 971, 1097, 1117, 1181, 1217, 1361, 1741, 1747, 1901, 2281, 2411, 2671, 2897, 2957, 3301, 3307, 3631, 3727, 4007, 4451, 4591, 4651, 4987, 5101, 5107, 5297, 5381, 5387, 5557, 5801, 6067, 6257, 6311 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Subsequence of A031924. LINKS T. D. Noe, Table of n, a(n) for n=1..1000 FORMULA Let p(k) be the k-th prime; sequence gives p(n) such that p(n+2)-p(n+1)=p(n+1)-p(n)=6. EXAMPLE 47 is a term as the next two primes are 53 and 59. MATHEMATICA ok[p_] := (q = NextPrime[p]) == p+6 && NextPrime[q] == q+6; Select[Prime /@ Range[1000], ok][[;; 45]] (* Jean-François Alcover, Jul 11 2011 *) Transpose[Select[Partition[Prime[Range[1000]], 3, 1], Differences[#]=={6, 6}&]] [[1]] (* Harvey P. Dale, Apr 25 2014 *) PROG (PARI) is_A047948(n)={nextprime(n+1)==n+6 && nextprime(n+7)==n+12 && isprime(n)} \\ Charles R Greathouse IV, Aug 17 2011, simplified by M. F. Hasler, Jan 13 2013 (PARI) p=2; q=3; forprime(r=5, 1e4, if(r-p==12&&q-p==6, print1(p", ")); p=q; q=r) \\ Charles R Greathouse IV, Aug 17 2011 CROSSREFS Cf. A031924, A078853, A046789. Cf. A033451 (four consecutive primes with difference 6) Cf. A001223, A033451, A052197, A052198. Sequence in context: A044379 A044760 A142505 * A142529 A288022 A142634 Adjacent sequences:  A047945 A047946 A047947 * A047949 A047950 A047951 KEYWORD easy,nonn AUTHOR EXTENSIONS Corrected by T. D. Noe, Mar 07 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 13 23:47 EDT 2019. Contains 327983 sequences. (Running on oeis4.)