login
A046980
Numerators of Taylor series for exp(x)*cos(x).
4
1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1
OFFSET
0,1
COMMENTS
Lehmer sequence U_n for R=2 Q=1. [Artur Jasinski, Oct 06 2008]
REFERENCES
G. W. Caunt, Infinitesimal Calculus, Oxford Univ. Press, 1914, p. 477.
FORMULA
G.f.: (1+x-x^3)/(1+x^4).
a(n) = (b^(n+1) - c^(n+1))/(b - c) where b = sqrt(2)-((1 + I)/sqrt(2)), c = (1 + I)/sqrt(2). [Artur Jasinski, Oct 06 2008]
EXAMPLE
1 + 1*x - (1/3)*x^3 - (1/6)*x^4 - (1/30)*x^5 + (1/630)*x^7 + (1/2520)*x^8 + (1/22680)*x^9 - ...
MAPLE
A046980 := n -> `if`(n mod 4 = 2, 0, (-1)^floor((n+1)/4)):
seq(A046980(n), n=0..92); # Peter Luschny, Jun 16 2017
MATHEMATICA
b = -((1 + I)/Sqrt[2]) + Sqrt[2]; c = (1 + I)/Sqrt[2]; Table[ Round[(b^n - c^n)/(b - c)], {n, 2, 200}] (* Artur Jasinski, Oct 06 2008 *)
LinearRecurrence[{0, 0, 0, -1}, {1, 1, 0, -1}, 100] (* Jean-François Alcover, Apr 01 2016 *)
PadRight[{}, 120, {1, 1, 0, -1, -1, -1, 0, 1}] (* Harvey P. Dale, Nov 02 2024 *)
CROSSREFS
Cf. A046981.
Sequence in context: A229343 A085369 A188082 * A152822 A118831 A118828
KEYWORD
sign,frac,easy,nice
STATUS
approved