login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A046980 Numerators of Taylor series for exp(x)*cos(x). 4
1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Lehmer sequence U_n for R=2 Q=1. [Artur Jasinski, Oct 06 2008]

REFERENCES

G. W. Caunt, Infinitesimal Calculus, Oxford Univ. Press, 1914, p. 477.

LINKS

Table of n, a(n) for n=0..92.

FORMULA

G.f.: (1+x-x^3)/(1+x^4).

a(n) = (b^(n+1) - c^(n+1))/(b - c) where b = sqrt(2)-((1 + I)/sqrt(2)), c = (1 + I)/sqrt(2). [Artur Jasinski, Oct 06 2008]

EXAMPLE

1 + 1*x - (1/3)*x^3 - (1/6)*x^4 - (1/30)*x^5 + (1/630)*x^7 + (1/2520)*x^8 + (1/22680)*x^9 - ...

MAPLE

A046980 := n -> `if`(n mod 4 = 2, 0, (-1)^floor((n+1)/4)):

seq(A046980(n), n=0..92); # Peter Luschny, Jun 16 2017

MATHEMATICA

b = -((1 + I)/Sqrt[2]) + Sqrt[2]; c = (1 + I)/Sqrt[2]; Table[ Round[(b^n - c^n)/(b - c)], {n, 2, 200}] (* Artur Jasinski, Oct 06 2008 *)

LinearRecurrence[{0, 0, 0, -1}, {1, 1, 0, -1}, 100] (* Jean-Fran├žois Alcover, Apr 01 2016 *)

CROSSREFS

Cf. A046981.

Sequence in context: A014339 A004547 A085369 * A152822 A118831 A118828

Adjacent sequences:  A046977 A046978 A046979 * A046981 A046982 A046983

KEYWORD

sign,frac,easy,nice

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 20 00:51 EST 2018. Contains 299357 sequences. (Running on oeis4.)