login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A046309
Numbers that are divisible by at least 8 primes (counted with multiplicity).
4
256, 384, 512, 576, 640, 768, 864, 896, 960, 1024, 1152, 1280, 1296, 1344, 1408, 1440, 1536, 1600, 1664, 1728, 1792, 1920, 1944, 2016, 2048, 2112, 2160, 2176, 2240, 2304, 2400, 2432, 2496, 2560, 2592, 2688, 2816, 2880, 2916, 2944, 3024, 3072, 3136
OFFSET
1,1
LINKS
FORMULA
Product p_i^e_i with Sum e_i >= 8.
MATHEMATICA
Select[Range[3200], PrimeOmega[#]>7&] (* Harvey P. Dale, May 29 2013 *)
PROG
(PARI) is(n)=bigomega(n)>7 \\ Charles R Greathouse IV, Sep 17 2015
(Python)
from math import prod, isqrt
from sympy import primerange, integer_nthroot, primepi
def A046309(n):
def g(x, a, b, c, m): yield from (((d, ) for d in enumerate(primerange(b, isqrt(x//c)+1), a)) if m==2 else (((a2, b2), )+d for a2, b2 in enumerate(primerange(b, integer_nthroot(x//c, m)[0]+1), a) for d in g(x, a2, b2, c*b2, m-1)))
def f(x): return int(n+primepi(x)+sum(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x, 0, 1, 1, i)) for i in range(2, 8)))
kmin, kmax = 1, 2
while f(kmax) >= kmax:
kmax <<= 1
while True:
kmid = kmax+kmin>>1
if f(kmid) < kmid:
kmax = kmid
else:
kmin = kmid
if kmax-kmin <= 1:
break
return kmax # Chai Wah Wu, Aug 23 2024
CROSSREFS
Cf. A046310.
Sequence in context: A345534 A345786 A186473 * A036332 A114987 A046310
KEYWORD
nonn
AUTHOR
Patrick De Geest, Jun 15 1998
STATUS
approved