login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A046307
Numbers that are divisible by at least 7 primes (counted with multiplicity).
3
128, 192, 256, 288, 320, 384, 432, 448, 480, 512, 576, 640, 648, 672, 704, 720, 768, 800, 832, 864, 896, 960, 972, 1008, 1024, 1056, 1080, 1088, 1120, 1152, 1200, 1216, 1248, 1280, 1296, 1344, 1408, 1440, 1458, 1472, 1512, 1536, 1568, 1584, 1600, 1620
OFFSET
1,1
LINKS
FORMULA
Product p_i^e_i with Sum e_i >= 7.
MATHEMATICA
Select[Range[2000], PrimeOmega[#]>6&] (* Harvey P. Dale, Nov 16 2012 *)
PROG
(PARI) is(n)=bigomega(n)>6 \\ Charles R Greathouse IV, Sep 17 2015
(Python)
from math import prod, isqrt
from sympy import primerange, integer_nthroot, primepi
def A046307(n):
def g(x, a, b, c, m): yield from (((d, ) for d in enumerate(primerange(b, isqrt(x//c)+1), a)) if m==2 else (((a2, b2), )+d for a2, b2 in enumerate(primerange(b, integer_nthroot(x//c, m)[0]+1), a) for d in g(x, a2, b2, c*b2, m-1)))
def f(x): return int(n+primepi(x)+sum(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x, 0, 1, 1, i)) for i in range(2, 7)))
kmin, kmax = 1, 2
while f(kmax) >= kmax:
kmax <<= 1
while True:
kmid = kmax+kmin>>1
if f(kmid) < kmid:
kmax = kmid
else:
kmin = kmid
if kmax-kmin <= 1:
break
return kmax # Chai Wah Wu, Aug 23 2024
CROSSREFS
Cf. A046308.
Sequence in context: A109651 A114408 A114418 * A036331 A046308 A110290
KEYWORD
nonn
AUTHOR
Patrick De Geest, Jun 15 1998
STATUS
approved