login
A046134
p, p+2 and p+8 are primes.
8
3, 5, 11, 29, 59, 71, 101, 149, 191, 269, 431, 569, 599, 821, 1031, 1061, 1229, 1289, 1319, 1451, 1481, 1619, 1871, 2081, 2129, 2339, 2381, 2549, 2711, 2789, 3251, 3299, 3461, 3539, 4019, 4049, 4091, 4649, 4721, 5099, 5441, 5519, 5639, 5651
OFFSET
1,1
LINKS
Eric Weisstein's World of Mathematics, Prime Triplet.
MAPLE
for a from 3 by 2 to 10000 do
if `and`(isprime(a), isprime(a+2), isprime(a+8)) then print(a); end if;
end do;
# Matt C. Anderson, Jul 26 2015
MATHEMATICA
Select[Range@ 5680, AllTrue[{#, # + 2, # + 8}, PrimeQ] &] (* Michael De Vlieger, Jul 24 2015, Version 10 *)
Select[Prime[Range[800]], And@@PrimeQ[{# + 2, # + 8}] &] (* Vincenzo Librandi, Jul 27 2015 *)
PROG
(Magma) [p: p in PrimesUpTo(6000) |IsPrime(p+2) and IsPrime(p+8)]; // Vincenzo Librandi, Jul 27 2015
CROSSREFS
Sequence in context: A319393 A019338 A292539 * A177932 A328329 A326392
KEYWORD
nonn,easy
STATUS
approved