The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A046133 p and p+12 are both prime. 25
 5, 7, 11, 17, 19, 29, 31, 41, 47, 59, 61, 67, 71, 89, 97, 101, 127, 137, 139, 151, 167, 179, 181, 199, 211, 227, 229, 239, 251, 257, 269, 271, 281, 337, 347, 367, 389, 397, 409, 419, 421, 431, 449, 467, 479, 487, 491, 509, 557, 587, 601, 607, 619, 631, 641 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Using the Elliott-Halberstam conjecture, Maynard proves that there are an infinite number of primes here. - T. D. Noe, Nov 26 2013 REFERENCES P. D. T. A. Elliott and H. Halberstam, A conjecture in prime number theory, Symposia Mathematica, Vol. IV (INDAM, Rome, 1968/69), pages 59-72, Academic Press, London, 1970. LINKS T. D. Noe, Table of n, a(n) for n = 1..1000 James Maynard, Small gaps between primes, arxiv 1311.4600 [math.NT], 2013-2019. Maxie D. Schmidt, New Congruences and Finite Difference Equations for Generalized Factorial Functions, arXiv:1701.04741 [math.CO], 2017. Eric Weisstein's World of Mathematics, Twin Primes Wikipedia, Elliott-Halberstam conjecture FORMULA a(n) >> n log^2 n. \\ Charles R Greathouse IV, Apr 28 2015 MATHEMATICA Select[Range[1000], PrimeQ[#] && PrimeQ[#+12]&] (* Vladimir Joseph Stephan Orlovsky, Aug 29 2008 *) Select[Prime[Range[200]], PrimeQ[#+12]&] (* Harvey P. Dale, Jan 16 2016 *) PROG (PARI) select(p->isprime(p+12), primes(100)) \\ Charles R Greathouse IV, Apr 28 2015 CROSSREFS Different from A015917. Sequence in context: A254672 A056775 A015917 * A086136 A136052 A301913 Adjacent sequences:  A046130 A046131 A046132 * A046134 A046135 A046136 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 21 14:50 EST 2021. Contains 340351 sequences. (Running on oeis4.)