login
A046133
Primes p such that p + 12 is also prime.
26
5, 7, 11, 17, 19, 29, 31, 41, 47, 59, 61, 67, 71, 89, 97, 101, 127, 137, 139, 151, 167, 179, 181, 199, 211, 227, 229, 239, 251, 257, 269, 271, 281, 337, 347, 367, 389, 397, 409, 419, 421, 431, 449, 467, 479, 487, 491, 509, 557, 587, 601, 607, 619, 631, 641
OFFSET
1,1
COMMENTS
Using the Elliott-Halberstam conjecture, Maynard proves that there are an infinite number of primes here. - T. D. Noe, Nov 26 2013
REFERENCES
P. D. T. A. Elliott and H. Halberstam, A conjecture in prime number theory, Symposia Mathematica, Vol. IV (INDAM, Rome, 1968/69), pages 59-72, Academic Press, London, 1970.
LINKS
James Maynard, Small gaps between primes, arXiv:1311.4600 [math.NT], 2013-2019.
Eric Weisstein's World of Mathematics, Twin Primes.
FORMULA
a(n) >> n log^2 n. \\ Charles R Greathouse IV, Apr 28 2015
MATHEMATICA
Select[Range[1000], PrimeQ[#] && PrimeQ[#+12]&] (* Vladimir Joseph Stephan Orlovsky, Aug 29 2008 *)
Select[Prime[Range[200]], PrimeQ[#+12]&] (* Harvey P. Dale, Jan 16 2016 *)
PROG
(PARI) select(p->isprime(p+12), primes(100)) \\ Charles R Greathouse IV, Apr 28 2015
CROSSREFS
Different from A015917.
Sequence in context: A254672 A056775 A015917 * A086136 A136052 A301913
KEYWORD
nonn
STATUS
approved