The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A042993 Primes congruent to {0, 2, 3} mod 5. 11
 2, 3, 5, 7, 13, 17, 23, 37, 43, 47, 53, 67, 73, 83, 97, 103, 107, 113, 127, 137, 157, 163, 167, 173, 193, 197, 223, 227, 233, 257, 263, 277, 283, 293, 307, 313, 317, 337, 347, 353, 367, 373, 383, 397, 433, 443, 457 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Also, primes p that are quadratic nonresidues modulo 5 (and from the quadratic reciprocity law, odd p such that 5 is a quadratic nonresidue modulo p). For primes p' that are quadratic residues modulo 5 (and such that 5 is a quadratic residue mod p') see A045468. - Lekraj Beedassy, Jul 13 2004 Primes p that divide Fibonacci(p+1). - Ron Knott, Jun 27 2014 REFERENCES G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, Theorem 180 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 EXAMPLE For prime 7, Fibonacci(8) = 21 = 3*7, for prime 13, Fibonacci(14) = 377 = 13*29. MATHEMATICA Select[Prime[Range[100]], MemberQ[{0, 2, 3}, Mod[#, 5]]&] (* Harvey P. Dale, Mar 03 2012 *) PROG (MAGMA) [p: p in PrimesUpTo(600) | p mod 5 in [0, 2, 3]]; // Vincenzo Librandi, Aug 09 2012 CROSSREFS Primes dividing A001654. Cf. A038872 for primes p which divide Fibonacci(p-1). - Ron Knott, Jun 27 2014 Sequence in context: A262839 A234695 A067905 * A308711 A033664 A024785 Adjacent sequences:  A042990 A042991 A042992 * A042994 A042995 A042996 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 2 19:29 EDT 2020. Contains 333190 sequences. (Running on oeis4.)