login
A042985
Convolution of A000108 (Catalan numbers) with A038846.
5
1, 17, 178, 1477, 10654, 69930, 428772, 2496813, 13962982, 75582078, 398302268, 2052354850, 10375356460, 51596749300, 252953904072, 1224672639357, 5863899363510, 27801377704310, 130648178243660, 609082400931158
OFFSET
0,2
COMMENTS
Also convolution of A045724 with A000984 (central binomial coefficients); also convolution of A042941 with A000302 (powers of 4).
LINKS
FORMULA
a(n) = binomial(n+4, 3)*(4^(n+1) - A000984(n+4)/A000984(3))/2, where A000984(n) = binomial(2*n, n).
G.f.: (1 - sqrt(1-4*x))/(2*x*(1-4*x)^4).
D-finite with recurrence: n*(n+1)*a(n) -2*n*(4*n+13)*a(n-1) +8*(n+3)*(2*n+5)*a(n-2)=0. - R. J. Mathar, Jan 28 2020
MATHEMATICA
CoefficientList[Series[(1-Sqrt[1-4*x])/(2*x*(1-4*x)^4), {x, 0, 20}], x] (* G. C. Greubel, Feb 17 2019 *)
PROG
(PARI) my(x='x+O('x^20)); Vec((1-sqrt(1-4*x))/(2*x*(1-4*x)^4)) \\ G. C. Greubel, Feb 17 2019
(Magma) m:=20; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (1-Sqrt(1-4*x))/(2*x*(1-4*x)^4) )); // G. C. Greubel, Feb 17 2019
(Sage) ((1-sqrt(1-4*x))/(2*x*(1-4*x)^4)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Feb 17 2019
CROSSREFS
Sequence in context: A228214 A246058 A121793 * A125405 A342198 A130651
KEYWORD
easy,nonn
STATUS
approved