login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A042982 Number of degree-n irreducible polynomials over GF(2) with trace = 1 and subtrace = 1. 7
0, 1, 0, 1, 2, 2, 5, 8, 13, 27, 45, 85, 160, 288, 550, 1024, 1920, 3654, 6885, 13107, 24989, 47616, 91225, 174760, 335462, 645435, 1242600, 2396745, 4628480, 8947294, 17318945, 33554432, 65074253, 126324495, 245424829, 477218560, 928645120, 1808400384, 3524082400, 6871947672, 13408665600, 26178873147 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

K. Cattell, C. R. Miers, F. Ruskey, J. Sawada and M. Serra, The Number of Irreducible Polynomials over GF(2) with Given Trace and Subtrace, J. Comb. Math. and Comb. Comp., 47 (2003) 31-64.

F. Ruskey, Number of irreducible polynomials over GF(2) with given trace and subtrace

FORMULA

a(n) = (1/n) * Sum_{ L(n, k) : n+k = 3 mod 4}, where L(n, k) = Sum_{ mu(d)*binomial(n/d, k/d) : d|gcd(n, k)}.

MATHEMATICA

L[n_, k_] := Sum[ MoebiusMu[d]*Binomial[n/d, k/d], {d, Divisors[GCD[n, k]]}]/n; a[n_] := Sum[ If[ Mod[n+k, 4] == 3, L[n, k], 0], {k, 0, n}]; Table[a[n], {n, 1, 32}] (* Jean-Fran├žois Alcover, Jun 28 2012, from formula *)

PROG

(PARI)

L(n, k) = sumdiv(gcd(n, k), d, moebius(d) * binomial(n/d, k/d) );

a(n) = sum(k=0, n, if( (n+k)%4==3, L(n, k), 0 ) ) / n;

vector(33, n, a(n))

/* Joerg Arndt, Jun 28 2012 */

CROSSREFS

Cf. A042979, A042980, A042981.

Cf. A074027, A074028, A074029, A074030.

Sequence in context: A293674 A052527 A335443 * A006367 A246807 A077902

Adjacent sequences:  A042979 A042980 A042981 * A042983 A042984 A042985

KEYWORD

nonn

AUTHOR

Frank Ruskey

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 7 17:02 EDT 2020. Contains 336277 sequences. (Running on oeis4.)