login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A039993
Number of different primes embedded in n.
18
0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 3, 1, 1, 1, 3, 0, 1, 1, 1, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3, 3, 1, 2, 3, 1, 4, 2, 1, 0, 1, 1, 2, 0, 1, 0, 2, 0, 0, 1, 1, 2, 3, 1, 1, 1, 2, 1, 2, 0, 1, 1, 1, 0, 1, 0, 2, 0, 0, 1, 3, 2, 4, 2, 2, 2, 1, 1, 3, 0, 0, 1, 2, 0, 1, 0, 1, 0, 1, 0, 1, 2, 1, 0, 2, 0, 3, 1, 0, 0, 2, 1, 4, 2, 1
OFFSET
1,13
COMMENTS
a(n) counts (distinct) permuted subsequences of digits of n which denote primes.
LINKS
C. K. Caldwell, The Prime Glossary, Primeval Number
J. P. Delahaye, Primes Hunters, 1379 is very primeval (in French)
W. Schneider, Primeval Numbers
G. Villemin's Almanach of Numbers, Mike Keith's Primeval Number (in French).
EXAMPLE
a(17) = 3 since we can obtain 7, 17 and 71. a(22) = 1, since we can get only one prime (in contrast, A075053(22) = 2).
a(1013) = 14 because the prime subsets derived from the digital permutations of 1013 are {3, 11, 13, 31, 101, 103, 113, 131, 311, 1013, 1031, 1103, 1301, 3011}.
MATHEMATICA
Needs["DiscreteMath`Combinatorica`"]; f[n_] := Block[{a = Drop[ Sort[ Subsets[ IntegerDigits[n]]], 1], b = c = {}, k = 1, l}, l = Length[a] + 1; While[k < l, b = Append[b, Permutations[ a[[k]] ]]; k++ ]; b = Union[ Flatten[b, 1]]; l = Length[b] + 1; k = 1; While[k < l, c = Append[c, FromDigits[ b[[k]] ]]; k++ ]; Count[ PrimeQ[ Union[c]], True]]; Table[ f[n], {n, 1, 105}]
Table[Count[Union[FromDigits/@(Flatten[Permutations/@Subsets[ IntegerDigits[ n]], 1])], _?PrimeQ], {n, 110}] (* Harvey P. Dale, Nov 29 2017 *)
PROG
(PARI) A039993(n)={my(S=[], D=vecsort(digits(n))); for(i=1, 2^#D-1, forperm(vecextract(D, i), p, isprime(fromdigits(Vec(p)))||next; S=setunion(S, [fromdigits(Vec(p))]))); #S} \\ To avoid duplicate scan of identical subsets of digits, one could skip the corresponding range of indices i when a binary pattern ...10... is detected. - M. F. Hasler, Mar 08 2014, simplified Oct 15 2019
(Python)
from itertools import permutations
from sympy import isprime
def a(n):
l=list(str(n))
L=[]
for i in range(len(l)):
L+=[int("".join(x)) for x in permutations(l, i + 1)]
return len([i for i in set(L) if isprime(i)])
print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 25 2017
(Python)
from sympy.utilities.iterables import multiset_permutations
from sympy import isprime
def A039993(n): return sum(1 for l in range(1, len(str(n))+1) for a in multiset_permutations(str(n), size=l) if a[0] !='0' and isprime(int(''.join(a)))) # Chai Wah Wu, Sep 13 2022
CROSSREFS
Different from A075053. For records see A072857, A076497. See also A134596, A134597.
Cf. A039999.
Sequence in context: A325669 A332488 A068153 * A075053 A328516 A328517
KEYWORD
nonn,base
EXTENSIONS
Edited by Robert G. Wilson v, Nov 25 2002
Keith link repaired by Charles R Greathouse IV, Aug 13 2009
STATUS
approved