OFFSET
1,2
COMMENTS
A004171 is a subsequence because phi(2^(2k+1)) = (2^k)^2. - Enrique Pérez Herrero, Aug 25 2011
Subsequence of primes is A002496 since in this case phi(k^2+1) = k^2. - Bernard Schott, Mar 06 2023
REFERENCES
D. M. Burton, Elementary Number Theory, Allyn and Bacon Inc., Boston MA, 1976, p. 141.
LINKS
T. D. Noe, Table of n, a(n) for n = 1..10000
W. D. Banks, J. B. Friedlander, C. Pomerance and I. E. Shparlinski, Multiplicative structure of values of the Euler function, in High Primes and Misdemeanours: Lectures in Honour of the Sixtieth Birthday of Hugh Cowie Williams (A. Van der Poorten, ed.), Fields Inst. Comm. 41 (2004), pp. 29-47.
P. Pollack and C. Pomerance, Square values of Euler's function, submitted for publication.
Bernard Schott, Subfamilies and subsequences
FORMULA
a(n) seems to be asymptotic to c*n^(3/2) with 1 < c < 1.3. - Benoit Cloitre, Sep 08 2002
Banks, Friedlander, Pomerance, and Shparlinski show that a(n) = O(n^1.421). - Charles R Greathouse IV, Aug 24 2009
EXAMPLE
phi(34) = 16 = 4*4.
MAPLE
with(numtheory); isA039770 := proc (n) return issqr(phi(n)) end proc; seq(`if`(isA039770(n), n, NULL), n = 1 .. 505); # Nathaniel Johnston, Oct 09 2013
MATHEMATICA
Select[ Range[ 600 ], IntegerQ[ Sqrt[ EulerPhi[ # ] ] ]& ]
PROG
(PARI) for(n=1, 120, if (issquare(eulerphi(n)), print1(n, ", ")))
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
STATUS
approved